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Foreword

Software testing is one of the most cost-intensive tasks in the modern software
production process. The application of formal approaches to the testing process
has gained steady attention in recent years. Effective and efficient test cases may
be generated automatically from formal system models and specifications or be
developed based on a formal analysis of the system. Formal approaches to testing
use techniques from areas like theorem proving, model checking, constraint res-
olution, program analysis, abstract interpretation, Markov chains, and various
others. These techniques are combined with traditional approaches to testing.

The workshop on Formal Approaches to Testing of Software (FATES) selected
a number of high-quality submissions out of these fields for presentation at the
workshop as well as inclusion in the workshop proceedings. The contributions
show the state of the art in the application of formal methods in the testing
process. The workshop had 38 submissions, of which 14 were accepted (13 full
papers and 1 work-in-progress). In all, this proceedings volume collects the work
of 38 authors from 12 countries. Each paper underwent 3 reviews, done by 36
reviewers.

This has been the fifth successful workshop in the history of the FATES
workshops. Previous workshops were held in Aaalborg (Denmark) in 2001 and
in Brno (Czech Republic) in 2002 as satellites of CONCUR, and in Montréal
(Canada) in 2003 and Linz (Austra) in 2004 as satellites of the IEEE/ACM
Conference on Automated Software Engineering (ASE).

We would like to express our gratitude to all authors for their valuable contri-
butions and to the Workshop Organizing Committee of the CAV 2005 conference.
In addition, we would like to thank all members of the FATES Program Com-
mittee and the additional reviewers, who were given the important and tedious
task of reviewing many papers. The individuals who contributed to this effort
are listed on the following pages.

Redmond and Aachen Wolfgang Grieskamp
March 2005 Carsten Weise
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Marcin Jurdziński, Doron Peled, Hongyang Qu . . . . . . . . . . . . . . . . . . . . 134

Time Unbalanced Partial Order
Doron Peled, Hongyang Qu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



XII Table of Contents

Testing Systems of Concurrent Black-Boxes—An Automata-Theoretic
and Decompositional Approach

Gaoyan Xie, Zhe Dang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Automated Generation of Positive and Negative Tests for Parsers
Sergey Zelenov, Sophia Zelenova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Testing from Algebraic Specifications: Test Data Set Selection by
Unfolding Axioms

Marc Aiguier, Agnès Arnould, Clément Boin, Pascale Le Gall,
Bruno Marre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



Simulated Time for Testing Railway
Interlockings with TTCN-3�

Stefan Blom1, Natalia Ioustinova2, Jaco van de Pol2,4,
Axel Rennoch3, and Natalia Sidorova4

1 Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
Stefan.Blom@uibk.ac.at

2 Centrum voor Wiskunde en Informatica, SEN2, P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands

Natalia.Ioustinova@cwi.nl, Jaco.van.de.Pol@cwi.nl
3 Fraunhofer FOKUS, Kaiserin-Augusta-Alee 31, D-10589, Berlin, Germany

axel.rennoch@fokus.fhg.de
4 Eindhoven University of Technology, Dept. of Math. and Computer Science,

P.O. Box 513, 5612 MB Eindhoven, The Netherlands
n.sidorova@tue.nl

Abstract. Railway control systems are timed and safety-critical. Tes-
ting these systems is a key issue. Prior to system testing, the software of
a railway control system is tested separately from the hardware. Here we
show that real time and scaled time semantics are inefficient for testing
this software. We provide a time semantics with simulated time and show
that this semantics is more suitable for testing of software of railway
control systems.

TTCN-3 is a standardized language for specifying and executing test
suites. It supports real time and scaled time but not simulated time.
We provide a solution that allows simulated time testing with TTCN-3.
Our solution is based on Dijkstra’s distributed termination detection al-
gorithm. The solution is implemented and can be reused for simulated
time testing of other systems with similar characteristics.

Keywords: testing, real time, discrete time, scaled time, simulated time,
interlockings, TTCN-3.

1 Introduction

Railway control systems are safety-critical and therefore we have to ensure that
they are designed and implemented correctly. The interlocking is a layer of rail-
way control systems that guarantees safety. It allows to execute commands given
by a user only if they are safe; unsafe commands are rejected. Interlockings also
react in dangerous situations that can lead to derailments and collisions. In this

� This work is done within the project “TTMedal. Test and Testing Methodologies
for Advanced Languages (TT-Medal)” [14].

W. Grieskamp and C. Weise (Eds.): FATES 2005, LNCS 3997, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S. Blom et al.

paper we propose a testing method for interlockings and indicate the character-
istics of systems for which this method will be suitable as well.

The software part of the interlocking is a programthat consists of a largenumber
of guarded assignments.The programdefines a control cycle that is repeated by the
system. The control cycle consists of two phases: an active phase and an idle phase.
The active phase starts with reading the inputs, then proceeds by evaluating the
guards and by computing new output values, and finally issues outputs. After the
active phase, the system becomes idle for the rest of the control cycle. The point
of the control cycle where the idle phase starts is further referred to as an idleness
point. The total time of the active and the idle phases of the control cycle is fixed.
Although the environment of the systemchanges continuously, the system sees only
snapshots of the environment made at the beginning of each control cycle. Thus
the environment is discrete from the system’s point of view. The system is timed,
delays are used to guarantee safety. To keep the logic of the system simple and safe,
the delays are chosen based on the worst case assumptions about the environment
behavior. In this paper, we try and choose a time semantics that is the most suitable
and efficient to test this kind of systems.

Real time is usually considered to be the most adequate choice when testing
timed systems. In real time, the system clock is driven by a physical clock. In the
interlocking, the length of the active phase of the control cycle is much smaller
than the length of the control cycle. Therefore, the total time spent by the system
on being idle is much larger than the time spent on real computations. Hence, with
testing interlockings in real time, we waste a large amount of time on idle phases.

When testing interlockings, we actually test a software system, so we have
the control over the timing of test executions. The most simple, näıve solution
is to test the system using scaled time. Scaled time is calculated as initial time
plus the product of a time factor and a difference between the current physical
time and the initial moment. The larger the factor is the faster we can execute
tests. Choosing the time factor is however not as simple as it seems. The time
factor must be small enough to make the longest active phase fit into the scaled
control cycle. Hence, we have to determine the largest possible time factor that
still satisfies this condition. Determining the largest time factor is difficult, time-
consuming and potentially error-prone. Any simple change in the system or in
the test suite implies that the factor has to be determined again.

Even if we have found the time factor, it still would not be optimal for testing.
The time spent on computations differs from cycle to cycle. If computations in
one control cycle take ten times as much time as computations in the other ten
cycles, the total time spent by the system on being idle is still much larger than
the total computation time. Hence, testing with scaled time is not the best choice
for this kind of systems.

In this paper, we propose a solution based on simulated time where the system
clock is a discrete logical clock. Simulated time is based on the assumption that
the time spent by the system on computations is negligible compared to the
duration of the external events. Therefore, the computations are considered to
be instantaneous and time progresses only when the system is idle.
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The reasons why simulated time is adequate for testing this kind of systems are
the following: The length of the control cycle is fixed by the design of the system.
The environmental changes are seen by the system as snapshots made at the
beginning of each control cycle. This provides natural discretization of the system
behavior. Interlockings are designed in such a way that the duration of the control
cycle is much smaller than the minimal time within which the system must react
on the changes in the environment. Therefore, we may safely use simulated time
for testing this kind of systems. In general, simulated time can be seen as scaled
time with a dynamic time factor that is determined automatically. Since the
factor is dynamic, the approach is efficient in case of varying computation times
and allows adequate simulation of the environment in case the system cannot be
tested in field.

We have chosen TTCN-3 to implement our solution for testing interlockings.
TTCN-3 is a language with the syntax and the operational semantics standard-
ized by ETSI [8, 2, 3]. TTCN-3 was originally developed for real-time testing of
telecommunication systems. A TTCN-3 test executable has predefined standard
interfaces [4, 5] that allows to offer TTCN-3 solutions that do not depend on
the implementation details of a system under test (SUT). Therefore, applying
TTCN-3 to domains other than telecommunication systems is potentially ben-
eficial. Implementing simulated time for existing TTCN-3 interfaces is however
not straightforward.

In simulated time, a test system and an SUT should agree on simulated time.
To guarantee this, we provide a mechanism that detects an idleness point of an
SUT together with a test system for each control cycle and then synchronizes
them on time progression. A TTCN-3 test system and an SUT usually consist of
several concurrent components, so we extend a distributed termination detection
algorithm [1] to decide on idleness of all components and to synchronize them
on time progression. Our implementation consists of a TTCN-3 module and
Java classes for simulated time. The TTCN-3 module supports simulated time
within the TTCN-3 executable entity. The Java classes provide implementation
of simulated time for platform and system adapters. The solution is general and
can be used to test systems other than interlockings.

The rest of the paper is organized as follows: Section 2 provides a brief survey
on a general structure of a TTCN-3 test system [4]. In Section 3 we describe par-
ticularities of railway control systems and interlockings. In Section4 we define a
time semantics for testing interlockings. In Section 5, we present the implemen-
tation of simulated time for TTCN-3 test systems. We conclude with Section 6
where we discuss the limitations of our solution, propose possible ways to resolve
them and outline future work.

2 TTCN-3 Test Systems

TTCN-3 is intended for specification of (abstract) test suites [8]. The specifica-
tions can be generated automatically or developed manually. A specification of
a test suite is a TTCN-3 module which possibly imports some other modules.
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Modules are the TTCN-3 building blocks which can be parsed and compiled
autonomously. A module consists of two parts: a definition part and a control
part. The first one specifies test cases. The second one defines the order in which
these test cases should be executed.

A test suite is executed by a TTCN-3 test system whose general structure
is defined in [4]. Fig. 1 illustrates this structure. The Test Management (TM)
entity controls the order of execution of test cases and logs test events. Typically,
this entity also implements the user interface of the test system. The TTCN-
3 executable (TE) entity actually executes or interprets a test suit. The SUT
adapter (SA) implements communication between a TTCN-3 test system and
an SUT. It adapts message- and procedure-based communication of the TTCN-
3 test system to the particular execution platform of the test system. The SA
entity also propagates messages and calls from the TE entity to the SUT and
notifies the TE about messages and calls from the SUT. The platform adapter
(PA) realizes platform-dependant issues like external functions and time.

The TE entity executes TTCN-3 modules. A call of a test case can be seen as
an invocation of an independent program. Starting a test case leads to creating
a configuration. A configuration consists of several test components running in
parallel and communicating with each other and with an SUT by message passing
or by procedure calls. The first test component created at the starting point of
a test case execution is the main test component (MTC).

For communication purposes, a test component owns a set of ports. Each
port has in and out directions. Infinite FIFO queues are used to represent in
directions; out directions are linked directly to the communication partners. A
configuration can be changed dynamically by performing configuration opera-
tions create, connect, map, start and stop that allow to create a test
component, to map and connect its ports to the ports of other components, to
start the component with a certain behavior and finally to stop it. The behavior
of a test component is defined by a function given as a reference to the start op-
eration. All components and ports are implicitly destroyed at the termination of
each test case, so each test case will completely create its required configuration
of components and connections when its execution starts.

To specify time delays, TTCN-3 supports a timer mechanism. Timers are
local, namely each timer belongs to a certain test component. For each test

TRI

TCI

TEST MANAGEMENT (TM)

TTCN−3 EXECUTABLE (TE)

SUT ADAPTER (SA) PLATFORM ADAPTER (PA)

Fig. 1. General structure of a TTCN-3 test system
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component, there exists a timeout list. A test component can start a timer for
a certain duration by operation start, stop a timer by operation stop, check
whether a timer is running by operation running, read the elapsed time of a
running timer by operation read and consume timeouts from the timeout list
by operation timeout. A timer can be active or inactive. An active timer runs
from 0 up to the specified duration. When the specified duration is reached, a
timer expires, i.e. it adds a timeout to the timeout list of the test component
and becomes inactive. Operation timeout allows a test component to consume
a timeout message from its list.

An implementation of timers is platform-dependent, so the timer instances
created in the TE and operations on them are implemented by the PA entity.
Timers are distinguished by unique timer identifiers (TID). The runtime inter-
face [4] (TRI) allows the TE entity to invoke external functions and the opera-
tions on timers implemented by the PA entity. For invocations of some TTCN-3
operations, there exists a direct correlation to invocations of TRI operations.
TTCN-3 timer operations start, stop, read, running are realized by TRI
operations triStartTimer, triStopTimer, triReadTimer, triTimerRun-
ning respectively. These operations are invoked by the TE entity and performed
by the PA entity.

If the TE invokes triStartTimer, the PA starts the indicated timer with the
specified duration. If the TE invokes triStopTimer, the PA stops the timer. If
the TE calls triReadTimer, the PA returns the time elapsed from the moment
of starting the timer. In case the timer has not been started or already expired,
the PA returns zero. If the TE calls triTimerRunning, the PA replies whether
the timer is active or not.

The PA is responsible for expiring the timers. If an active timer reaches its spec-
ified duration, the PA deactivates the timer and notifies the TE about the expira-
tion by calling TRI operation triTimeout. On the invocation of this operation,
the TE entity adds the timeout to the timeout list of the corresponding test com-
ponent. When starting, stopping or expiring a timer whose timeout is still in the
timeout list, the TE removes the timeout message from the timeout list.

In the next section, we give a short overview of railway control systems and
describe the control cycle typical for railway interlockings.

3 Testing Railway Interlockings

Railway control systems consist of three layers: infrastructure, logistic, and in-
terlocking. The infrastructure represents a railway yard that basically consists of
a collection of linked railway tracks supplied with such features as signals, points
and level crossings. The logistic layer is responsible for the interface with hu-
man experts, who give control instructions for the railway yard to guide trains.
The interlocking guarantees that the execution of these instructions does not
cause train collisions or derailments. Thus it is responsible for the safety of the
railway system. If the interlocking considers a command as unsafe, the execu-
tion of the command is postponed until the command can be safely executed or
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discarded. Since the interlocking is the most safety-critical layer of the railway
control system, we further concentrate on this layer.

Here we consider interlocking systems based on Vital Processor Interlock-
ing (VPI) that is used nowadays in Australia, some Asian countries, Italy, the
Netherlands, Spain and the USA [11]. A VPI is implemented as a machine which
executes hardware checks and a program consisting of a large number of guarded
assignments. The assignments reflect dependencies between various objects of a
specific railway yard like points, signals, level crossings and delays on electri-
cal devices and ensure the safety of the railway system. An example of a VPI
specification can be found in [15]. In the TTMedal project [14], we develop an
approach to testing VPI software with TTCN-3. This work is done in coopera-
tion with engineers of ProRail who take care of capacity, reliability and safety
on Dutch railways. They have formulated general safety requirements for VPIs.
We use these requirements to develop a TTCN-3 test system for VPIs.

The VPI program has several read-only input variables, auxiliary variables
used for computations and several writable variables that correspond to the
outputs of the program. The program specifies a control cycle that is repeated
with a fixed period by the hardware. The control cycle consists of two phases: an
active phase and an idle phase. The active phase starts with reading new values
for input variables. The infrastructure and the logistic layer determine the values
of the input variables. After the values are latched by the program, it uses them
to compute new values for internal variables and finally decides on new outputs.
The values of the output variables are transmitted to the infrastructure and to
the logistic, where they are used to manage signals, points, level crossings and
trains. Here we assume that the infrastructure always follows the commands of
the interlocking. The rest of the control cycle the system stays idle.

The duration of the control cycle is fixed. Delays are used to ensure the safety
of the system. A lot of safety requirements to VPIs are timed. They describe de-
pendencies between infrastructure objects in a period of time, e.g. ”when freed,
a train track must remain unoccupied for 120 seconds”. VPIs control infras-
tructure objects. The objects of the infrastructure are represented in the VPI
program by input and output variables. Thus the requirements defined in terms
of infrastructure objects can be easily reformulated in terms of input and output
variables of the VPI program. Hence VPIs are time-critical systems. Further we
are going to propose a time semantics suitable for testing VPI software.

4 Time Semantics for Testing Interlockings

Originally TTCN-3 was developed for the real time testing of telecommunication
systems. We use it here for testing VPIs. When testing VPI software in real
time, we waste time on idle phases of each control cycle. Imagine that we have
to execute 1000 tests of 6 minutes each. Executing all of them will require thus
100 hours. Suppose that the control cycle of VPI is repeated each second and
that the active phase takes in average 0.2 seconds. Then we will lose 80 hours
on idle phases.
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We are testing VPI software separately from hardware. That gives us the
control over the timing of test execution, so we could try to solve the problem
by using scaled time. For testing with scaled time, we have to determine a
time factor. Scaled time is calculated as initial time plus physical time that
has passed from the initial moment multiplied by the time factor. When testing
VPI software, we can scale only the idle phase of the control cycle. Time spent on
active phases will still be determined by a hardware running the VPI program,
so active phases cannot be scaled. Therefore, we have to choose a safe time factor
so that the longest active phase still fits into the scaled control cycle.

Determining a safe time factor, we have to take into account not only the
longest active phase of the VPI program but also the longest active phase of the
test system. Therefore, determining a time factor is difficult, time consuming and
potentially error-prone. Minor changes made in the program or in the test suite
can lead to a change of the duration of active phases. Even if we determined a
time factor, this time factor is still not optimal. The duration of the active phase
of the VPI program together with a test system can differ from one control cycle
to another. That means that we still lose time on idle phases of control cycles
with a short active phase. Scaled time is not optimal for testing interlockings.

In this section we try and determine which time semantics is the most suitable
for testing VPI software.

The first choice to be made is between dense and discrete time. It is normally
assumed that real-time systems operate in “real”, continuous time (though some
physicists contest against the statement that the changes of a system state may
occur at any real-numbered time point). However, a less expensive, discrete time
solution is for many systems as good as dense time in the modelling sense, and
better than the dense one when testing and verification are concerned [10]. The
duration of the control cycle of VPIs is fixed. The program sees only snapshots
of the environment at the beginning of each control cycle, meaning the program
observes the environment as a discrete system. Therefore, the choice for discrete
time is obvious.

Often, it has been argued that models where any action takes some non-
zero time allow more faithful descriptions. However, VPI software is designed
in such a way that an active phase always fits into the control cycle. The dura-
tion of a control cycle is smaller than the time period within which the system
must react on the environmental changes. In sequel, the actual duration of the
active phase is negligible compared to the duration of the control cycle and to
the reaction time of the system. Therefore, we can treat the active phase as
instantaneous.

Time constraints in a VPI program are expressed by time delays that are
much longer than the duration of the control cycle. Together with the negligible
duration of an active phase, that leads us to the conclusion that we may safely
use a logical clock instead of a physical one, namely, we may use simulated time.
In simulated time, the time progress has the least priority in a system, and time
may progress only if the system is idle. This property is known as minimal delay
or maximal progress [12]. We refer to the time progress action as tick and to the
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period of time between two ticks as a time slice. Further we define the notion
of idleness more formally.

Here we consider closed systems consisting of multiple components. Timers
are used to express time constraints of the system. We say that a component is
idle iff it cannot proceed by performing computations or by receiving messages.
As a consequence, all in ports of an idle component are empty and the timeout
list of the component is empty as well. Otherwise, the component could still
proceed by receiving a message or by consuming a timeout. Further we refer
to the idleness of a single component as local idleness. We say that a system is
idle iff all components of the system are idle and none of the active timers can
expire in the current time slice. We refer to the idleness of the whole system as
global idleness. If the system is globally idle, the time progresses by action tick
that increases the elapsed time of active timers by one. If a timer has reached
its specified duration, it expires within the current time slice. Timers ready to
expire within the same time slice expire in an arbitrary order.

In the next section, we provide a TTCN-3 solution for testing with simulated
time.

5 Simulated Time in TTCN-3

TTCN-3 is developed for real time testing, simulated time is not included as
an option of a TTCN-3 test system. Our goal is to implement simulated time
within the existing structure of a TTCN-3 test system using only standard TRI
interface and without introducing any changes into the syntax and the semantics
of the TTCN-3 language. Here, we consider a closed system formed by an SUT
and a TTCN-3 test system. In simulated time, we have to keep time of all system
components synchronized. Therefore, we should provide a mechanism that allows
to detect the idleness point of the system in each control cycle and to implement
tick-steps.

An SUT is idle if it cannot progress further by performing internal compu-
tations or by receiving input messages from the test system, i.e. all its in ports
have to be empty. When doing black-box testing, we do not have control over
the computations of an SUT and we cannot observe its internal FIFO queues.
Therefore, we make two assumption about an SUT: an SUT supports an in-
terface notifying us of its status (active or idle); an SUT supports an interface
for time progression. These are reasonable assumptions when interlockings are
concerned. Interlockings have the control cycle with an explicit input/output
structure, thus extending VPI software with such interfaces is straightforward.

A TTCN-3 test system is idle if all its entities are idle. The TE entity is idle
if all the test components are idle, i.e. they cannot progress further by receiving
new messages or by performing computations, meaning, the timeout lists are
empty and the channels are empty as well. The PA is idle if it is not performing
any external function and there are no timers that have reached their specified
duration but not expired yet. The SA cares for the communication with the
SUT, so we use it to decide on the idleness of the SUT.
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5.1 Distributed Termination Detection Algorithm of Dijkstra

To decide on the global idleness of the system, we employ the well-known dis-
tributed termination detection algorithm of Dijkstra [1]. The algorithm allows
to decide on the termination of a system of N components. Each component
has a unique identity that is a natural number from 0 to N − 1. The algorithm
differentiates two kinds of messages: (i) basic messages exchanged by the com-
ponents; (ii) termination detection messages. The main assumption important
for the correctness of the algorithm is that communication is reliable, meaning,
no message is lost.

Each component has a status that is either active or idle. Active components
can send messages, idle components are waiting. An idle component can become
active only if it gets a basic message. An active component can always become
idle. The system is terminated only if all components have the idle status and
all channels are empty. The Dijkstra’s algorithm allows one of the components,
for example the 0-component, to detect whether termination has been reached.

We cannot decide on termination only by looking at the status of the compo-
nents. The idle status of the components is necessary but not sufficient in this
case. The status of a component changes from idle to active only by receiving a
basic message, so we have to keep the track of all the messages in the network.
Each component has a local message counter. A component decreases its counter
when it receives a basic message. When a component sends a basic message, it
increases its message counter. Moreover, each component has a local flag. The
flag is initially false , and it turns true only when the component receives a basic
message.

The components are connected into a ring that is used to transmit the ter-
mination message that is referred to as a token. The termination token consists
of a global message counter and a global flag. The 0-component initiates a ter-
mination detection by sending a termination token with the counter equal to 0
and the flag equal to false to the next component in the ring. The 0-component
expects that no messages are pending in the network and none of the compo-
nents has the active status, which is to be checked by passing the token along
the ring.

If the next component has the active status, it keeps the token until the status
of the component becomes idle. If the component has the idle status it modifies
the token by adding its local message counter to the global message counter. If
the value of the local flag of the component is true, the component propagates
the flag by changing the global flag to true, meaning, that maybe one of the
system components is still active. Then the component forwards the token to
the next component along the ring. After forwarding the token, the component
changes its local flag to false, meaning that the token already got the up-to-
date information about this component. The termination is detected by the
0-component only if the component gets back the token with the global flag
equal to false and the sum of the global message counter with the local message
counter of the 0-component is zero. In this case the 0-component can be sure that
all other components have the idle status and there are no messages pending in
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Fig. 2. A Closed System with Simulated Time

the FIFO queues representing the channels. Otherwise, the 0-component starts
a new round of termination detection by sending a termination token with the
counter equal to 0 and the flag equal to false .

5.2 An Extension of the Distributed Detection Algorithm

We extend the Dijkstra’s distributed termination detection algorithm to decide
on global idleness of the system and to provide time progression. Trying to
build an ad-hoc idleness detection into the functions that define the behavior of
the test components is error-prone and time-consuming. Therefore, we provide
simulated time as a stand alone solution that can be reused for any TTCN-3 test
system with simulated time. To check local idleness of the system components,
we introduce an idleness handler for each system component, i.e. for each test
component, for the PA entity and for the SA entity. To decide on global idleness
and to progress time, we introduce a time manager. The time manager and
the idleness handlers are connected into a ring illustrated in Fig.2. (There the
dashed lines represent the border of the original system and the channels within
the system.) Although this solution brings a certain overhead, it is generic and
independent of the details of a test suit.

The implementation of simulated time consists of a TTCN-3 module and sev-
eral Java classes. The TTCN-3 module defines the idleness handlers and time
progression for the test components. The module can be imported by a spec-
ification of a test suite. The Java classes implement a time manager, a timer
unit, idleness handlers for the timer unit and for the SUT. The classes are part
of the platform and system adapters respectively. When implementing our ap-
proach, we have used a series of tools for TTCN-3-based testing provided by the
TestingTech company [13].

To implement simulated time, we have to detect global idleness, not termi-
nation. After idleness is detected time progresses and detecting global idleness
starts in the next time slice again. So we have to ensure time progression and
restarting the idleness detection in each time slice. For the sake of simplicity, we
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consider here only communication based on message passing. The same approach
can be used in the case of communication based on procedure calls.

The original algorithm works with two kinds of messages: basic messages and
token. In a TTCN-3 test system, we also have to deal with time progression
and timeouts. Timeouts are a special kind of messages that are not sent via
usual ports but placed into timeout lists. Timeouts can disappear from lists as a
result of stopping or resetting timers. The original algorithm works only in case
all sent messages are received. Not all timeouts are received by the components.
Some of timeouts are lost by stopping and resetting timers, so we handle timeouts
separately from basic messages. For basic messages, we assume that the channels
of TTCN-3 test system are reliable and that no dynamic reconfiguration takes
place in the system.

Time Manager. A time manager initializes idleness detection, decides on global
idleness and realizes time progression. The time manager initiates idleness de-
tection by sending an idleness token. As in the original algorithm, the idleness
token has a global message counter and a global flag. In order to support time
progression, we extend the set of values of the global flag carried by the idleness
token. In the original algorithm, the global flag was true or false. In the extended
version, the global flag can be “IDLE TAG” meaning that there are not active
components in the system, “ACTIVE TAG” meaning that maybe one of the sys-
tem components is still active, and “TICK TAG” meaning that time progresses
by one time slice. The time manager initiates idleness detection by sending an
idleness token with the counter equal to 0 and the flag equal to “IDLE TAG”
to the next idleness handler along the ring.

If the time manager receives the idleness token back with the zero message
counter and the global flag with value “IDLE TAG”, it detects global idleness.
Otherwise, it repeats idleness detection in the same time slice. If global idleness is
detected, the time manager changes the global flag of the token to “TICK TAG”
and sends it along the ring to reinitialise the handlers for idleness detection
in the next time slice. After the time manager gets back the token with the
“TICK TAG” global flag, it safely triggers time progression and then starts the
idleness detection in the next time slice. Since all time issues are realized by the
PA entity, we implement the timer manager as a part of the PA entity.

Idleness Handler. Here we define the general behavior of an idleness handler.
A TTCN-3 function in Fig. 3 specifies the behavior of idleness handlers. In the
Dijkstra’s algorithm, termination detection was built into the functionality of
components. We separate idleness detection from normal functionality of com-
ponents by introducing idleness handlers. To guarantee the correctness of this
extension of the algorithm, the communication between a component and its
idleness handler is synchronized. An idleness handler acknowledges each mes-
sage received from its component. An idleness handler and its component com-
municate via port Comp. Ports RingIn and RingOut are used by a handler
to receive a token from a previous handler and resp. to send a token to the next
handler along the ring.
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function IdlenessHandler ( ) runs on IdlenessComponent {
var Token token ; var boolean TokenPresent := false ;
var boolean flag := true ; var boolean idle := false ;
var integer count := 0 ;
while ( true ){

alt {
[ ] Comp . receive (SEND)

{ count := count+1; Comp . send (ACK) ;}
[ ] Comp . receive (RECV)

{count := count−1; flag := true ; idle := false ; Comp . send (ACK) ; }
[ ] Comp . receive (ACTIVATE)

{flag := true ; idle := false ; Comp . send (ACK) ; }
[ ] Comp . receive (IDLE)

{ i dle := true ; Comp . send (ACK) ; }
[ ] RingIn . receive (Token) −> value token

{TokenPresent := true ;}
}

i f ( idle and TokenPresent)
{ i f ( token . flag==IDLE TAG or token . flag==ACTIVE TAG)

{ i f ( flag ){token . flag:=ACTIVE TAG; flag:=false ;}
token . count:=token . count+count ;}

i f (token . tag==TICK TAG)
{log (” time progression ” ) ;
count:=0; flag:=true ; idle :=true ;}

RingOut . send ( token ) ;
TokenPresent := false ;
}}}

Fig. 3. A TTCN-3 idleness handler

The local message counter, the status represented by the variable idle and the
local flag of the component are now kept by its idleness handler. Initially, the idle
status is false , meaning the component is potentially active, the local flag is true,
meaning the token does not have up-to-date information about the component
yet, and the local message counter is zero. The idleness handler keeps track of
all the messages sent and received by the component, the component informs
the idleness handler about receiving a basic message, sending a basic message or
becoming idle by sending “RECV”, “SEND”, and “IDLE” messages respectively.
In case of sending, receiving a message or becoming idle, the idleness handler
follows the original distributed termination detection algorithm.

In a TTCN-3 test system, a component can become active also if it consumes
a timeout. Therefore, the component client notifies its idleness handler about
consuming a timeout by the “ACTIVATE” message. This message triggers the
idleness handler to change the the local flag to true and the idle status to false .

Forwarding the idleness token with an “IDLE TAG” global flag or “AC-
TIVE TAG” global flag happens on the same conditions as forwarding the termi-
nation token with the false and true global flag respectively. In case the idleness
handler gets the token with the “TICK TAG”-flag, it reinitializes the local mes-
sage counter counter, sets the local idleness status and the local flag to true.
Now the handler is ready for the next time slice.

Transformation of the TTCN-3 Code. The idleness detection works cor-
rectly only if the TTCN-3 code of test components follows certain specification
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pattern and the whole system is configured correctly. By correct configuration
we mean that each test component has an port for communication with a unique
idleness handler. Moreover the handlers together with the time manager are con-
nected into a ring. The SimulatedTime module implementing simulated time is
imported. No dynamic reconfiguration is possible. By the specification pattern,
we mean that the code specifying behavior of test components should satisfy the
following conditions:

– every TTCN-3 blocking operation (receive, timeout, done, etc.) is preceded
by sending “IDLE” to its idleness handler;

– every receive statement is followed by sending “RECV” to the idleness
handler;

– every send statement is followed by sending “SEND” to the idleness handler;
– a timeout statement should be followed by sending “ACTIVATE” to the

idleness handler
– sending “IDLE”, “RECV”, “SEND” and “ACTIVATE” are followed by re-

ceiving an acknowledgment from the idleness handler;
– an acknowledgment for “ACTIVATE” is followed by stopping the timer to

inform the PA that the timeout is consumed.

The specification pattern can be implemented as an automatic transformation
of TTCN-3 specifications. Further we consider implementation of the timer unit
in the PA.

Timer Unit. A timer unit implements the TRI operations on timers. Our so-
lution for timer unit keeps active timers in three tables: a “blocked” table for
active timers that are not going to expire in the current time slice, a “ready”
table for timers ready to expire, and an “expired” table for expired timers, whose
timeout message is not consumed yet.

Starting a timer with the zero value leads to deleting the timer from all three
tables and adding the timer into the “ready” table. This timer will cause a time-
out during the current time slice. Therefore, the timer unit sends “ACTIVATE”
to its idleness handler.

Starting a timer with a value greater than zero leads to deleting the timer
from all three tables and to adding the timer into the “blocked” table. Stopping
a timer leads to removing the timer from all the tree tables. Issuing a timeout
moves an expired timer from the “ready” table to the “expired” table. In case
there are no other “ready” or “expired” timers, the timer unit reports to its
idleness handler “IDLE”.

On time progression issued by the time manager, the timer unit increases the
elapsed time of all active timers by one, moves the timers that expire in the
next time slice into the “ready” table and notifies its idleness handler by the
“ACTIVATE” message.

6 Conclusion and Future Work

Using formal methods for the verification of railway control systems is an ac-
tive area of research. Model checking [7] and theorem proving [6] have been
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successfully applied to untimed verification of interlockings. Several domain-
specific languages [15, 9] have been developed to support automatic verification,
validation and system testing.

In this paper, we provided a time semantics that is the most efficient for
testing VPI software. When testing with simulated time, we do not waste time
on idle phases as in real time testing. Simulated time can be considered as scaled
time with a dynamic time factor that is defined automatically. Hence simulated
time provides a fair and effective scaling.

We provided a “simulated time” solution for TTCN-3 test systems. The solu-
tion is based on an extension of the well-known distributed termination detection
algorithm [1]. We implemented our approach as a stand alone solution that can
be used for any TTCN-3 test system when testing with simulated time is nec-
essary. This work together with other case studies within the TT-Medal project
showed the necessity of simulated time for testing. Formulating proposals for
changing TRI so that it allows a straightforward implementation of simulated
time in a TTCN-3 test system is the subject of future work.

The Dijkstra’s algorithm that we use as a basis for idleness detection works
correctly only if the channels of the system are reliable, i.e. no basic message gets
lost. The TTCN-3 language provides operations that allow dynamic reconfigu-
ration and clearing the contents of channels. Our current implementation has
two limitations: no distributed testing, no dynamic reconfiguration. Dynamic
reconfiguration means dynamically adding and removing test components and,
consequently, mapping and unmapping ports. Dynamic reconfiguration is poten-
tially dangerous because a reconfiguration can lead to loosing messages. An easy
solution is to forbid dynamic reconfiguration of non-idle components.

Distributed testing, where a test system consists of multiple instances of a
TTCN-3 test system, is not possible with the current implementation of our
solution because such a system would have multiple copies of a time manager
instead of a mandatory single copy. This can be solved by disabling time man-
agers in slave copies and by extending termination ring across all the copies.
The current implementation of the solution is available on www.cwi.nl/∼ustin/
stime.html.

Acknowledgments. We would like to thank Daan van der Meij (ProRail, The
Netherlands) and Wan Fokkink (Free University of Amsterdam) who provided
us with detailed information on VPIs. We also appreciate discussions with Antti
Huima (Conformiq Company, Finland) that helped us to improve our solution.

References

1. E. W. Dijkstra, W. H. J. Feijen, and A. J. M. v. Gasteren. Derivation of a termi-
nation detection algorithm for distributed computations. Information Processing
Letters, 16(5):217–219, June 1983.

2. ETSI ES 201 873-1 V2.2.1 (2003-02). Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language.
ETSI Standard.



Simulated Time for Testing Railway Interlockings with TTCN-3 15

3. ETSI ES 201 873-4 V2.2.1 (2003-02). Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational
Semantics. ETSI Standard.

4. ETSI ES 201 873-5 V1.1.1 (2003-02). Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Inter-
face (TRI). ETSI Standard.

5. ETSI ES 201 873-6 V1.1.1 (2003-02). Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Inter-
face (TCI). ETSI Standard.

6. W. J. Fokkink. Safety criteria for the vital processor interlocking at hoorn-
kersenboogerd. In J. Allan, C. A. Brebbia, R. J. Hill, G. Sciutto, and S. Sone,
editors, Proc. 5th Conference on Computers in Railways - COMPRAIL’96, Vol-
ume I: Railway Systems and Management, Berlin, pages 101–110. Computational
Mechanics, 1996.

7. S. Gnesi, D. Latella, G. Lenzini, C. Abbaneo, A. M. Amendola, and P. Marmo. An
automatic spin validation of a safety critical railway control system. In DSN ’00:
Proceedings of the 2000 International Conference on Dependable Systems and Net-
works (formerly FTCS-30 and DCCA-8), pages 119–124. IEEE Computer Society,
2000.

8. J. Grabowski, D. Hogrefe, G. Rthy, I. Schieferdecker, A. Wiles, and C. Willcock.
An introduction into the testing and test control notation (TTCN-3). Computer
Networks, Volume 42, Issue 3, pages 375–403, June 2003.

9. A. E. Haxthausen and J. Peleska. Automatic verification, validation and test for
railway control systems based on domain-specific descriptions.

10. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
W. Kuich, editor, ICALP, volume 623 of Lecture Notes in Computer Science, pages
545–558. Springer, 1992.

11. U. Marscheck. Elektronische Stellwerke-internationale Überblick. SIG-
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Abstract. So far, model-based testing approaches have mostly been used in test-
ing through various kinds of APIs. In practice, however, testing through a GUI
is another equally important application area, which introduces new challenges.
In this paper, we introduce a new methodology for model-based GUI testing.
This includes using Labeled Transition Systems (LTSs) in conjunction with ac-
tion word and keyword techniques for test modeling. We have also conducted an
industrial case study where we tested a mobile device and were able to find previ-
ously unreported defects. The test environment included a standard MS Windows
GUI testing tool as well as components implementing our approach. Assessment
of the results from an industrial point of view suggests directions for future de-
velopment.

1 Introduction

System testing through a GUI can be considered as one of the most challenging types
of testing. It is often done by a separate testing team of domain experts that can validate
that the clients’ requirements have been fulfilled. However, the domain experts often
lack programming skills and require easy-to-use tools to support their work. Compared
to application programming interface (API) testing, GUI testing is made more complex
by the various user interface issues that need to be dealt with. Such issues include in-
put of user commands and interpretation of the output results, for instance, using text
recognition in some cases.

Developers are often reluctant to implement system level APIs only for the purposes
of testing. Moreover, general-purpose testing tools need to be adapted to use such APIs.
In contrast, a GUI is often available and there are several general-purpose GUI test-
ing tools, which can be easily taken into use. Among the test automation community,
however, GUI testing tools are not considered an optimal solution. This is largely due
to bad experiences in using so-called capture/replay tools that capture key presses, as
well as mouse movement, and replay those in regression tests. The bad experiences are
mostly involved with high maintenance costs associated with such a tool [1]. The GUI
is often the most volatile part of the system and possible changes to it affect the GUI
test automation scripts. In the worst case, the selected capture/replay tool uses bitmap
comparisons to verify the results of the test runs. False negative results can then be
obtained from minor changes in the look and feel of the system. In practice, such test
automation needs maintenance whenever the GUI is changed.

W. Grieskamp and C. Weise (Eds.): FATES 2005, LNCS 3997, pp. 16–31, 2006.
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The state of the art in GUI testing is represented by so-called keyword and action
word techniques [2, 3]. They help in maintenance problems by providing a clear sepa-
ration of concerns between business logic and the GUI navigation needed to implement
the logic. Keywords correspond to key presses and menu navigation, such as “click the
OK button”, while action words describe user events at a higher level of abstraction.
For instance, a single action word can be defined to open a selected file whose name
can be given as a parameter. The idea is that domain experts can design the test cases
easily using action words even before the system implementation has been started. Test
automation engineers then define the keywords that implement the action words using
the scripting language provided by the GUI automation tool.

Although some tools use smarter comparison techniques than pure bitmaps, and pro-
vide advanced test design concepts, such as keywords and action words, the mainte-
nance costs can still be significant. Moreover, such tools seldom find new bugs and
return the investment only when the same test suites are run several times, such as in
regression testing. The basic problem is in the static and linear nature of the test cases.
Even if only 10% of the test cases would need to be updated whenever the system under
test changes, this can mean modifying one hundred test cases from the test suite of one
thousand regression tests.

Our goal is to improve the status of GUI testing with model-based techniques. Firstly,
by using test models to generate test runs, we will not run into difficulties with maintain-
ing large test suites. Secondly, we have better chances of finding previously undetected
defects, since we are able to vary the order of events. Towards these ends, we propose a
test automation approach based on Labeled Transition Systems (LTSs) as well as action
words and keywords. The idea is to describe a test model as a LTS whose transitions
correspond to action words. This should be made as easy as possible for also testers
with no programming skills. The maintenance effort should localize to a single model
or few component models. The action machines we introduce are composed in paral-
lel with refinement machines mapping the action words to sequences of keywords. The
resulting composite LTS is then read into a general-purpose GUI testing tool that inter-
prets the keywords and walks through the model using some heuristics. The tool also
verifies the test results and handles the reporting.

The contributions of this paper are in formalizing the above scheme, introducing
novel test model architecture and applying the approach in an industrial case study.
Finally, we have assessed the results from an industrial point of view. The rest of the
paper is structured as follows. Sections 2 and 3 describe our approach in detail as well
as the case study we have conducted. The assessment of the results is given in Section 4.
Related work is discussed in Section 5 and conclusions drawn in Section 6.

2 Building a Test Model Architecture

In the following, we will develop a layered test model architecture for testing several
concurrently running applications through a GUI. The basis for layering is in keyword
and action word techniques, and therefore we will first introduce how to adapt these
concepts to model-based testing.
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As a running example, we will use testing of Symbian applications. Symbian [4] is
an operating system targeted for mobile devices such as smartphones and PDAs. The
variety of features available resembles testing of PC applications, but there are also
characteristics of embedded systems. For instance, there is no access to the resources
of the GUI. In the following, the term system under test (SUT) will be used to refer to
a device running Symbian OS.

2.1 Action Words and Keywords

As Buwalda [3] recommends in the description of action-based testing, test design-
ers should focus on high-level concepts in test design. This means modeling business
processes and picking interesting sequences of events for discovering possible errors.
These high-level events are called action words. The test automation engineer then im-
plements the action words with keywords, which act as a concrete implementation layer
of test automation.

An example of a keyword from our Symbian test environment is kwPressKey mod-
eling a key press. The keyword could be used, for instance, in a sequence that models
starting a calculator application. Such a sequence would correspond to a single ac-
tion word, say awStartCalculator. Thus, action words represent abstract operations like
“make a phone call”, “open Calculator” etc. Implementation of action words can consist
of sequences of keywords with related parameters as test data. However, the difference
between keywords and action words is somewhat in the eye of the beholder. The most
generic keywords can almost be considered as action words in the sense of functional-
ity; the main difference is in the purpose of use and the level of abstraction.

Our focus is on the state machine side of the action-based testing. We do not consider
decision tables, which are recommended as one alternative for handling test combina-
tions [3]. However, there have been some industrial implementations using spreadsheets
to describe keyword combinations to run test cases, and they have proven quite useful.
Experiences also suggest that the keywords need to be well described and agreed upon
jointly, so that the same test cases can be shared throughout an organization.

2.2 Test Model, Action Machines and Refinement Machines

We use the TVT verification toolset [5] to create test models. With the tools, the most
natural way to express the behavior of a SUT is an LTS. We use two tools in the toolset:
a graphical editor for drawing LTSs, and a parallel composition tool for calculating the
behavior of a system where its input LTSs run in parallel. We will compose our test
model LTS from small, hand-drawn LTSs with the parallel composition tool. The test
model specifies a part of the externally observable behavior of the SUT. At most that
part will be tested when the model is used in test runs.

In our test model architecture, hand-drawn LTSs are divided in two classes. Action
machines are the model-based equivalent for test cases expressed with action words,
whereas refinement machines give executable contents to action words, that is, refine-
ment from action words to keywords. In the following we formalize these concepts.

Definition 1 (LTS). A labeled transition system, abbreviated LTS, is defined as a
quadruple (S,Σ,Δ, ŝ) where S denotes a set of states, Σ is a set of actions (alphabet),
Δ ⊆ S×Σ×S is a set of transitions and ŝ ∈ S is an initial state. ��
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Fig. 1. Transition splitter and parallel composition

Our test model is a deterministic LTS. An LTS (S,Σ,Δ, ŝ) is deterministic if there is no
state in which any leaving transitions share the same action name (label). For example,
there are four such LTSs in Figure 1, with their initial states marked with filled circles.

Action machines and refinement machines are LTSs whose alphabets include action
words and keywords, respectively. In Figure 1, A is an action machine and R is a re-
finement machine. Action machines describe what can be tested at action word level.
In A , application can be first started, then verified to be running and finally quitted.
After quitting, the application can be started again, and so on. Refinement machines
specify how action words in action machines can be implemented. Keyword sequences
that implement an action word a are written in-between start_a and end_a transitions.
In Figure 1, R refines two action words in A . Firstly, it provides two alternative im-
plementations to action word awStartC. To start an application, a user can either use a
short cut key (by pressing “SoftRight”) or select the application from a menu. Secondly,
verification that the application is running is always carried out by checking that there is
text “Camera” on the screen. The action word for quitting the application is not refined
by R , but another refinement machine can be used to do that.

During the test execution, we keep track of the current state of the test model, starting
from the initial state. LTS P in Figure 1 would be a simple test model if all of its action
words were refined. One of the transitions leaving the current state is chosen. If the label
of the transition is not a keyword, the test execution continues from the destination state
of the transition. Otherwise, the action corresponding to the keyword is taken: a key
is pressed, a text is searched on the display etc. These actions either succeed or fail.
For example, text verification succeeds if and only if the searched text can be found on
the display. Because sometimes failing an action is allowed, or even required, we need
a way to specify the expected successfulnesses of actions in the test model. For that,
we use the labeling of transitions. There can be two labels (with and without a tilde)
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for some keywords; kwVerifyText<‘Clock alarm’> and ˜kwVerifyText<‘Clock alarm’>, for
instance. The former label states that in the source state of the transition searching text
‘Clock alarm’ is allowed to succeed and the latter allows the search to fail.

If the taken action succeeded (failed) a transition without (with) a tilde is searched
in the current state. If there is no such transition, an error has been found (that is, the
behavior differs from what is required in the test model). Otherwise, the test execution
is continued from the destination state of the transition.

Hence, our testing method resembles “exploration testing” introduced in [6]. How-
ever, we do not need separate output actions. This is because the only way we can ob-
serve the behavior of the SUT is to examine its GUI corresponding to the latest screen
capture. In addition, there are many actions that are neither input (keyword) nor output
actions. They can be used in debugging (in the execution log, one can see what action
word we tried to execute when an error was detected) and in measuring the coverage
(for instance, covered high-level actions can be found out).

2.3 Composing a Test Model

We use parallel composition for two different purposes. The main purpose is to create
test models that enable extensive testing of concurrent systems. This means that we can
test many applications simultaneously. It is clearly more efficient than testing only one
application at a time, because now interactions between the applications are also tested.
The other purpose is to refine the action machines by injecting the keywords of their
refinement machines in correct places in them.

Refinement could be carried out to some extent by replacing transitions labeled by
action words with the sequences of transitions specified in refinement machines. How-
ever, this kind of macro expansion mechanism would expand action words always to
the same keywords, which might not be wanted. For example, it is handy to expand
action word “show image” to keywords “select the second menu item” and “press show
button” when it is executed for the first time. Later on, the second item should be se-
lected by default in the image menu, and therefore the action word should be expanded
to keyword “press show button”. We avoid the limits of macro expansion mechanism by
using transition splitting on action machines and then letting the parallel composition
to do the refinement.

The transition splitter divides transitions with given labels in two by adding a new
state between the original source and destination states. If the label of a split transition
is “a” then the new transitions are labeled as “start_a” and “end_a”.

Definition 2 (Transition splitter “�A”). Let L be an LTS (S,Σ,Δ, ŝ) and A a set of
actions. Snew = {ss,a,s′ | (s,a,s′) ∈ Δ∧a ∈ A} is a set of new states (S∩Snew = /0). Then
�A (L) is an LTS (S′,Σ′,Δ′, ŝ′) where

– S′ = S∪Snew

– Σ′ = (Σ\A)∪{start_a |a ∈ A}∪{end_a |a ∈ A}
– Δ′ ={(s,a,s′) ∈ Δ |a /∈ A}

∪{(s,start_a,ss,a,s′) | (s,a,s′) ∈ Δ∧a ∈ A}
∪{(ss,a,s′ ,end_a,s′) | (s,a,s′) ∈ Δ∧a ∈ A}

– ŝ′ = ŝ ��
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In Figure 1, LTS As is obtained from A by splitting transitions with labels aw_StartC
and aw_VerifyC.

As already mentioned, we construct the test model with parallel composition. We use
a parallel composition that resembles the one given in [7]. Whereas traditional paral-
lel compositions synchronize syntactically the same actions of participating processes,
our parallel composition is given explicitly the combinations of actions that should be
synchronized and the results of the synchronous executions. This way we can state, for
example, that action a in process Px is synchronized with action b in process Py and
their synchronous execution is observed as action c (the result). The set of combina-
tions and results is called rules. The parallel composition combines component LTSs to
a single composite LTS in the following way.

Definition 3 (Parallel composition “‖R”). ‖R (L1, . . . ,Ln) is the parallel composition
of n LTSs according to rules R. LTS Li = (Si,Σi,Δi, ŝi). Let ΣR be a set of resulting
actions and

√
a “pass” symbol such that ∀i :

√
/∈ Σi. The rule set R ⊆ (Σ1 ∪{√})×

·· ·× (Σn ∪{√})×ΣR. Now ‖R (L1, . . . ,Ln) = (S,Σ,Δ, ŝ), where

– S = S1 ×·· ·×Sn

– Σ = {a ∈ ΣR | ∃a1, . . . ,an : (a1, . . . ,an,a) ∈ R}
– ((s1, . . . ,sn),a,(s′1, . . . ,s

′
n)) ∈ Δ if and only if there is (a1, . . . ,an,a) ∈ R such that

for every i (1 ≤ i ≤ n)
• (si,ai,s′i) ∈ Δi or
• ai =

√
and si = s′i

– ŝ = 〈ŝ1, . . . , ŝn〉 ��

A rule in a parallel composition associates an array of actions (or “pass” symbol
√

)
of input LTSs to an action in resulting LTS. The action is the result of the synchronous
execution of the actions in the array. If there is

√
instead of an action, the corresponding

LTS will not participate in the synchronous execution described by the rule.
In Figure 1, P is the parallel composition of As and R with rules

R = { 〈start_awStartC,start_awStartC,start_awStartC〉,
〈end_awStartC,end_awStartC,end_awStartC〉,
〈start_awVerifyC,start_awVerifyC,start_awVerifyC〉,
〈end_awVerifyC,end_awVerifyC,end_awVerifyC〉,
〈aw_QuitC,

√
,aw_QuitC〉,

〈√,kwPressKey<’AppMenu’>,kwPressKey<’AppMenu’>〉,
〈√,kwPressKey<’Center’>,kwPressKey<’Center’>〉,
〈√,kwPressKey<’SoftRight’>,kwPressKey<’SoftRight’>〉,
〈√,kwVerifyText<’Camera’>,kwVerifyText<’Camera’>〉}

2.4 Test Model Architecture

In the SUT, several applications can be run simultaneously, but only one can be active at
a time. The active application receives all user input except the one that activates a task
switcher. The user can activate an already running application with the task switcher.
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Fig. 2. Test model architecture

This setting forces us to restrict the concurrency (interleavings of actions) in the
test model. Otherwise, the test model would allow executing first one keyword in one
application and then another keyword in another application without activating the other
application first. This would lead to a situation where the test model assumes that both
applications have received one input, but in reality, the first application received two
inputs and the other none.

Because the activation itself must be expressed as a sequence of keywords, it is natural
to model the task switcher as a special application, a sort of a scheduler. The task switcher
starts executing when an active application is interrupted, and stops when it activates
another (or the same) application. Although the absence of interleaved actions might
make the parallel composition look an unnecessarily complicated tool for building the
model, it is not. The composition generates a test model that contains all combinations of
states in which the tested application can be inactive. Thus, it enables rigorous testing of
every application in every combination of states of the other applications in background.

Technically, we have one action machine for every application to be tested, and one
action machine for task switching: action machines G (Gallery application), V (Voice
recorder application) and T S (task switcher), for instance. Action machines are syn-
chronized with each other and with their refinement machines, as shown in Figure 2.
Before the synchronization, all action words of action machines are split.

In the figure, lines that connect action machines to refinement machines represent
synchronizing the split action words of the connected processes. For instance, we have
a rule for synchronizing �A(G) and R G1 with action start_awVerifyImageList and an-
other rule for �A(G) and R G2 with start_awViewImage. There are also rules that allow
execution of every keyword in refinement machines without synchronization.

Synchronizations that take care of task switching are presented with lines that con-
nect G and V to T S in the figure. Both G and V include actions INT and IRET that
represent interrupting the application and returning from interrupt. Initially, Gallery ap-
plication is active. If G executes INT synchronously with T S , G goes to a state where
it waits for IRET. On the other hand, T S executes keywords that activate another (or
the same) application in the SUT and then execute synchronously IRET with the corre-
sponding action machine.

Finally, there is a connector labeled FROM V IRST G in Figure 2. It represents “go
to Gallery” function in Voice recorder. In our SUT, the function activates Gallery ap-
plication and opens its sound clips menu. Voice recorder is deactivated but left in back-
ground. In the test model, action FROM V IRST G is the result of synchronizing actions
IGOTO<Gallery> in V and IRST<VoiceRecorder> actions in G . The first action leads V
to an interrupted state from which it can continue only by executing IRET synchronously
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with T S . The second action lets G to continue from an interrupted state, but forces it
to a state where sound clip menu is assumed to be on the screen.

Formally, our test model T M is acquired from the expression:

T M =‖R (�A (G),�A (T S),�A (V ),R G1,R G2,R T S ,R V )

where set A contains all the action words and rule set R is as outlined above.
One advantage of this architecture is that it allows us to reuse the component LTSs

with a variety of SUTs. For example, if the GUI of some application changes, all we
need to change is the refinement machine of the corresponding action machine. If a
feature in an application should not be tested, it is enough to remove the corresponding
action words from application’s action machine. If an application should not be tested,
we just drop out its LTSs from the parallel composition. Accordingly, if a new applica-
tion should be tested, we add the action and the refinement machine for it (also T S and
R T S must be changed to be able to activate the new application, but they are simple
enough to be generated automatically). Moreover, if we test a new SUT with the same
features but with completely different GUI, we redraw the refinement machines for the
SUT but use the same action machines.

While refinement machines can be changed without touching their action machines,
changing an action machine causes easily changes in its refinement machines. If a new
action word is introduced in an action machine, either its refinement machine has to be
extended correspondingly or a new refinement machine added to the parallel compo-
sition. In addition, changing the order of action words inside an action machine may
cause changes in its refinement machine. For example, action word awChooseFirstIm-
ageInGallery can be unfolded to different sequences of keywords depending on the state
of the SUT in which the action word is executed. In one state, Gallery application may
already show the image list. Then the action can be completed by a keyword that selects
the first item in the list. However, in another state, Gallery may show a list of voice sam-
ples, and therefore the refinement should first find out the list of images before the first
image can be selected. Thus, action words may contain hidden assumptions on SUT’s
state where the action takes place. Of course, one can make these assumptions explicit,
for example, by extending the action label: awChooseFirstImageInGalleryWhenImage-
ListIsShown.

3 System Testing on Symbian Platform

The above theory was developed in conjunction with an industrial case study. In this
section, we will describe the case study including the test environment and setting that
we used. Moreover, we outline the implementation of our model-based test engine, and
explain the modeling process concerning keyword selection and creation of the test
model itself. In addition, we will briefly evaluate our results.

3.1 Test Environment and Setting

The system we tested was a Symbian-based mobile device with Bluetooth capability.
The test execution system was installed on a PC, and it consisted of two main com-
ponents: test automation tool, including our test execution engine, and remote control
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Fig. 3. Test environment

software for the SUT. The test environment is depicted as a UML deployment diagram
in Figure 3. We created the test model with TVT tools. As a test automation tool we used
Mercury’s QuickTest Pro (QTP) [8]. QTP is a GUI testing tool for MS Windows capa-
ble of capturing information about window resources, such as buttons and text fields,
and providing access to those resources through an API. The tool also enables writing
and executing test procedures using a scripting language (Visual Basic Script, VBScript
in the following) and recording a test log when requested.

The remote control tool we used was m-Test by Intuwave [9]. It provides access to
the GUI of the SUT and to some internal information such as a list of running processes.
m-Test makes it possible to remotely navigate through the GUI (see Figure 4, on the left-
hand side). GUI resources visible on the display cannot be obtained, only the bitmap of
the display is available. Fortunately, m-Test is capable of recognizing text in the bitmap
(see Figure 4, on the right-hand side). m-Test supports various ways to connect to the
SUT; in the study we used a Bluetooth radio link.

Moreover, in the beginning of the study, we obtained a VBScript function library. It
was originally developed to serve as a library of keyword implementations for conven-
tional test procedures in system testing of the SUT. For example, for pushing a button
there was a function called ’Key’ etc.

3.2 Test Engine

The test execution engine, which executes the LTS state machine, consisted of four
parts: execution engine TestRunner, state model Model, transition selector Chooser,
and keyword proxy SUTAdapter (see Figure 3). TestRunner was responsible for ex-
ecuting transition events selected by Chooser using the keyword function library via
SUTAdapter. Based on the result of executing a keyword, TestRunner determines if
the test run should continue or not. If the run can continue, the cycle continues until
the number of executed transitions exceeds the maximum number of steps. The test
designer determines the step limit that is provided as a parameter.

Model was constructed from states (State), transitions (Transition), and their con-
nections to each other. The test model (LTS) is read from a file and translated to a state
object model, which provides access to the states and transitions.
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Fig. 4. Inputs and outputs of SUT as seen from m-Test

Chooser selects a transition to be executed in the current state. The selection method
can be random or probabilistic based on weights attached to the transitions. Naturally,
more advanced Chooser could also be based on an operation profile [10] or game theory
[11], for instance. Since the schedule of our case study was tight, we chose the random
selection algorithm because it was the easiest to implement.

The keyword function library that we obtained served as our initial keyword imple-
mentation. However, during the early phases of the study it became apparent that it was
not suitable for our purposes. The library had too much built-in control over the test pro-
cedure. In contrast, our approach requires that the test verdict must be given by the test
engine. The reason is that sometimes a failure of a SUT is actually the desired result. In
addition, since the flow control was partly embedded in the library, we did not have any
keyword that would report the status of the SUT. For that reason, we created a keyword
proxy (SUTAdapter). Its purpose was to hide original function library keywords, use or
re-implement them to fit our purpose, and to add some new keywords.

3.3 Keyword Categories

We discovered that there must be at least five types of keywords: command, navigate,
query, control, and state verification. As an example, some keywords from each cate-
gory are shown in Table 1. The command type keywords are the most obvious ones:
They send input to the SUT, for instance, “press key” or “write text”. Navigation key-
words, such as “select menu item”, are used to navigate in the GUI. Query keywords are
used to compare texts or images on the display. Control keywords are used to manage
the state of the SUT. These four keyword groups are well suited for most of the common
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Table 1. Keyword categories

Category Keyword Param. Description

Command kwPressKey ’keyLeft’ A key press
kwWriteText ’Hello’ Send text

Navigate kwSelectMenu ’Move’ Select a menu item
kwSelectAppMenu ’Clock’ Activates an application if started

Query kwVerifyText ’Move’ Verifes that given text is visible on the display
Control kwSetTarget ’Phone1’ Activates a device to receive subsequent commands

kwStartApp ’Recorder’ Start an application
State kwIsMenuSelected ’Move’ Confirms that the given menu item is selected
verification

testing situations. However, our approach allowed us to create several situations where
also the state verification keywords were needed.

State verification keywords verify that the SUT is in some particular state (for in-
stance, “Is menu text selected“) or that some sporadic event, like a phone call, has
occurred. These keywords were essential, because the environment did not allow us to
capture such information otherwise. The state of the SUT was only available through
indirect clues that were extracted from the display bitmap. Because of this, the test
model occasionally misinterpreted the state of the SUT or missed an event. This made
test modeling somewhat more complicated than we anticipated. The biggest difference
between the query and state verification keywords is in the intent of their use. Queries
are used to determine the presence of texts etc. on the display, whereas state verification
keywords check if the GUI is in a required state. The latter are used to detect if the SUT
is in a wrong state, i.e. the failure has occurred.

The missing of an event was the most common error in the model, which occurred
often when exact timing was required (like testing an alarm). This problem was prob-
ably caused by the slow communication between QTP and m-Test. There were several
occasions when some event was missed just because the execution of a keyword was
too slow or the execution time varied between runs.

3.4 Modeling Process

When we started our model creation process, we had three constraints: tight schedule,
many features to test, and no specifications what so ever. However, we obtained a user
guide of the device and a more mature product from the same product family. The latter
was used as a test oracle when developing the test model. Using the two, we were able
to create a mental model1 of the behavior of the SUT in various situations. One of
our objectives was to find concurrency-related defects. We explored manually through
several applications and tried several basic exploration techniques like opening the same
application in different ways. Within days, we found the first defect.

Since we believed that “bugs are social creatures”, we put more emphasis on the
particular application involved with the first defect. After a couple of days, we found

1 According to El-Far, human testers develop mental models and the basic idea behind model-
based testing is to formalize those models and use them for automatic testing [12].
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Table 2. Defects and their resulting states

Defect # Effect Result

1 Top bar disappears from Gallery The top bar remains missing
2 Gallery crashes I Gallery dies while Camera stays alive
3 Gallery crashes II Gallery dies while Voice Recorder stays alive
4 Device has to be rebooted No playback with Real Player and no access to Gallery
5 GUI in busy loop Recorder’s GUI blinks, no sound, and no error mes-

sage
6 Off by one The selection in Gallery’s menu changes either up or

down

several minor defects and one major defect. All these defects where found during the
development of the model.

The model itself consisted of seven components (as shown in Figure 2) and modeled
a system where two applications run concurrently. After composing the component
models, the final test model consisted of 297 states and 351 transitions, and used 17
action words and 18 keywords.

We found only one minor defect while executing the model. However, it should be
noted that the SUT was already thoroughly tested before our case study began, and
that the model was relatively small. With a larger model and the use of more advanced
heuristics, we hope to find more defects. The fact that several defects were discovered
before the test model was executed is mainly due to the overall benefits of precise mod-
eling, i.e. it reveals defects very effectively. This is in line with the similar observation
in [12].

3.5 Evaluation of Results

Initially, our hypothesis was that model-based testing is suitable for GUI testing and it
can find more bugs than linear script-based testing. We also acknowledged that model-
based GUI testing does face the same problems as conventional GUI testing, for in-
stance in detecting the state of the SUT. In the following, we evaluate our findings and
reflect those to our hypothesis.

Defects. We found six defects in total: two related to the Gallery application, three to
the co-operation of Gallery and other applications (Real Player and Voice Recorder),
and one to Voice Recorder only. In Table 2, the defects are described in more detail.

The only critical defect was #4, which made it almost impossible to use the device
after the failure. The defect was the only one that had been reported previously; others
were previously unreported. Defects #2 and #3 can be considered moderate since they
allow continuing the normal use of the device. They only interfere with the use of the
Gallery application. Defects #1, #5, and #6 are minor since they do not even interfere
with the use of the applications.

Defect #6 was the only one that we found while running the model. Even though
we are not sure whether #2–#4 are different instances of the same error, this defect was
clearly related to GUI component reuse (we had another product of the same family).
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As discussed above, defects #1–#5 were found while getting used to the device and
developing the model. Excluding #5, they could have been found by executing the
model. Automatic detection of the bugs similar to #5 is generally very difficult; the
blinking of the screen was so rapid that we could not capture two subsequent screens
being different. It should be noted that this problem relates to the underlying GUI test
automation tools, not our components or the model.

Even though our case study was not very extensive since the test model covered
only a fraction of the functionality of the SUT, it gave us some promising indications
towards the suitability of the approach. Especially the development of the test model
was considered beneficial, because we found most of the defects while doing that.

Tools. Since our purpose was not to create a model-based GUI testing tool but to prove
the concept of model-based GUI testing, the components we implemented were some-
what limited. The major problem was that we did not have a coverage-based selection
for the transitions and, thus, we did not measure any model coverage. In addition, we
did not provide any indication of what part of the model is being tested and when. In
practice, the tester should see the test run advancing by observing the model visually.
Another disadvantage was the performance of the underlying GUI testing tools; it took
5–20 seconds to execute a single keyword on an efficient PC.

One limiting factor we found was the scripting language. VBScript has several good
features, but it also lacks several key features (dictionaries, inheritance etc.) that are
included in other versions of Visual Basic. Those features are not so important in devel-
oping linear scripts. However, they would be very helpful in implementing state model
executor and similar complex components needed in model-based testing.

4 Assessment from Industrial Point of View

Overall, the Symbian case study proved out to be beneficial. In the most practical sense,
it helped by finding a few defects. It was also useful to start considering how model-
based testing methodology would fit into the normal way of working. The methodology
seems to be an ever-growing promise as a testing approach, but there has not been so
many industrial experiences published, especially in the GUI setting.

4.1 The First Step

One starting goal was to evaluate how existing test assets could be used in transition to
model-based testing. It seems that the step towards it might not be as steep as assumed.
Naturally, model-based testing is a new concept to most testers. However, with some
real-life testing scenarios and demonstrations it was possible to disseminate information
while keeping a practical point of view.

After initial phase, the lift-off was rapid and we could get some results quite fast. Be-
cause of the selected approach, the model was generated manually. Naturally, it would
be more interesting to be able to take it into use directly from a modeling tool used
by designers or generate it semi-automatically. Creation of the test model was quite
straightforward and the model created in the beginning kept its original basic content
quite well, i.e. maintenance effort associated with the model was not an issue here.
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The tools selected as an underlying GUI test automation have been used for testing
the actual products. There were certain functionality and performance problems, but
otherwise the tools suited quite well for the new approach. However, Visual Basic Script
was found to be quite limited with regard to programming capabilities.

It would have been interesting to see how the practical deployment of the approach
would have succeeded. The commercial tools used in the study are familiar to testers
of the products, but the TVT toolset is an unsupported university prototype, and its
deployment would have taken some effort.

4.2 The Next Step

From a practical test management point of view, model-based testing requires a mind-
set change from test suites and test cases to test models. Reporting the test results is
different from the traditional test cases. With a good model, you can cover many test
cases and more, but it is not easy to map fully the coverage of the model to the coverage
of the conventional test cases. The test management aspect would also require further
studies on how to tackle the situation from the point of view of metrics collecting and
test design. This has also been noticed earlier by Robinson [13]. Additional questions
would also include whether model-based testing is metrics-wise more effective than
conventional techniques as Apfelbaum and Doyle [14] suggest. It is also unclear how
much time and money the deployment of model-based testing would take, and how the
competences of the testing personnel should be developed.

Another interesting study topic would be to investigate where to obtain the model. If
we would obtain a design model, how it should be modified to be used as a test model?
More research is also neeeded on how well model-based testing responds to the changes
in the product family, i.e. how portable the action word and keyword architecture is
when a SUT undergoes changes at different levels (operating system vs. application
software, GUI languages and locales), which all create new product variants.

Reusability and portability are promises of model-based testing. Thus, it should be
investigated how the testing of relatively similar kinds of products within one product
family would benefit from a model-based approach. In further studies, model-based
techniques should be used in a real-life testing project already from the beginning. This
would allow us to observe what kinds of defects it would reveal. The product develop-
ment cycle would be enhanced if we could find the most critical ones first.

5 Related Work

There has been some research in the area of model-based testing of GUI systems. The
idea of using general purpose GUI test automation tools for model-based testing origi-
nates from Robinson [15]. Ostrand et.al. [16] proposed a visual test design environment
to create, edit, and maintain test scripts. They used commercial test tool to capture GUI
information and replay that information back to the SUT.

Memon proposed in his Ph.D. thesis [17] a framework for testing GUI applications.
The framework is based on the knowledge of GUI components. The author derives test
cases from GUI structure and usage, measures test coverage and determines the correct
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actions of the GUI using an oracle based on previously generated test cases and run-
time execution information. Belli [18] extended state machines to show not only correct
GUI actions but also incorrect transitions. However, in this context, the author prefers
regular expression to state machines.

In the Symbian setting, there are some fundamental restrictions compared to con-
ventional GUI testing. Unlike usually, there is no access to the GUI resources, which
makes comparisons much harder. Instead of comparing values of text fields, for in-
stance, bitmaps and strings obtained by text recognition must be used.

Compared to Buwalda’s work [3], instead of defining finite state machines using
spreadsheets, we use LTSs, which is probably the simplest visual formalism for the
purpose. To avoid the usual problem of visual models being cluttered, we restrict to
small component models that are composed automatically. We map action words to
keywords using separate refinement machines that are also defined as LTSs. Further-
more, a separate heuristic component is used to walk through the model.

An example of a related industrial tool for model-based testing is Conformiq Test
Generator [19]. It uses UML state machines for test modeling and communicates with
a SUT using a SUT-specific adapter. Compared to LTSs, obviously, UML state ma-
chines are much more expressive. Naturally, this helps in test modeling and introduces
possibilities for data variation, for instance, by generating random data for input fields.
However, making mistakes becomes easier with a formalism that is more expressive,
especially when the modelers are not UML experts.

6 Conclusions

We have demonstrated how to leverage model-based testing practices in system testing
through a GUI. For test modeling, we propose combining Labeled Transition Systems
(LTSs) with action words, a proven method for GUI testing. Such action machines are
composed in parallel with refinement machines that map the action words to keywords
corresponding to the navigation in the GUI. Finally, the composite model is read into a
general-purpose GUI test automation system, which executes the model using a heuris-
tic component, and handles the reporting. We have also conducted an industrial case
study in which we tested a mobile device and found previously unreported bugs.

To summarize, our results on model-based GUI testing are quite promising. The
approach is built on solid theory using proven concepts. Moreover, the associated test
automation architecture is simple and includes general-purpose components. From the
practical point of view, the execution of test steps should be more dependable and faster,
but the issue is in the general-purpose components that are hard to replace. In the future
work, a special emphasis should be placed on the topics addressed in the assessment of
our results. This could pave the way for an industrial use of the approach.
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Abstract. Testing tasks can be viewed (and organized!) as games against nature.
We study reachability games in the context of testing. Such games are ubiqui-
tous. A single industrial test suite may involve many instances of a reachability
game. Hence the importance of optimal or near optimal strategies for reachability
games. One can use linear programming or the value iteration method of Markov
decision process theory to find optimal strategies. Both methods have been im-
plemented in an industrial model-based testing tool, Spec Explorer, developed at
Microsoft Research.

1 Introduction

If you think of playful activities, software testing may not be the first thing that comes to
your mind, but it is useful to see software testing as a game that the tester plays with the
implementation under test (IUT). We are not the first to see software testing as a game
[2] but our experience with building testing tools at Microsoft leads us to a particular
framework.

An industrial tester typically writes an elaborate test harness around the IUT and
provides an application program interface (API) for the interaction with the IUT. You
can think of the API sitting between the tester and the IUT. It is symmetric in the sense
that it specifies the methods that the tester can use to influence IUT and the methods
that the IUT can use to pass information to the tester. From tester’s point of view, the
first methods are controllable actions and the second methods are observable actions.

The full state of the IUT is hidden from the tester. Instead, the tester has a model
of the IUT’s behavior. A model state is given by the values of the model variables
which can be changed by means of actions whether controllable or observable. But
this is not the whole story. In addition, there is an implicit division of the states into
active and passive; in other words there is an implicit Boolean state variable “the state
is active”. The initial state is active but, whenever the model makes a transition to a
target state where an observable action is enabled, the target state is passive; the target
state is active otherwise. At a passive state, the tester waits for an observable action.
If nothing happens within a state-dependent timeout, the tester interprets the timeout
itself as a default observable action which changes the passive state into an active state
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with the same values of the explicit variables. At an active state the tester applies one
of the enabled controllable actions. Some active states are final; this is determined by
a predicate on state variables. The tester has an option of finishing the game whenever
the state is final.

We presume here that the model has already been checked for correctness. We are
testing IUT for the conformance to the model. Here are some examples of how you
detect nonconformance. Suppose that the model is in a passive state s. If only actions
a, b are enabled in s but you observe an action c, different from a and b, then you
witness a violation of the conformance relation. If the model tells you that any non-
timeout action enabled in s returns a positive integer but the IUT throws an exception
or returns −1, then, again, you have discovered a conformance violation. This kind of
conformance relation is close to the one studied by de Alfaro [11].

In a given passive state the next observable action and its result are not determined
uniquely in general. What are the possible sources of the apparent nondeterminism?
One possible source is that the IUT interacts with the outside world in a way that is
hidden from the tester. For example, it is in many cases not desirable for the tester to
control the scheduling of the execution threads of a multithreaded IUT; it may be even
impossible in the case of a distributed IUT. Another possible source of nondeterminism
is that the model state is more abstract than the IUT state. For example, the model might
use a set to represent a collection of elements that in reality is ordered in one way or
another in the IUT.

The group of Foundations of Software Engineering at Microsoft Research developed
a tool, called Spec Explorer, for writing, exploring, and validating software models and
for model-based testing of software. Typically the model is more abstract and more
compact than the IUT; nevertheless its state space can be infinite or very large. It is
desirable to have a finite state space of a size that allows one to explore the state space.
To this end, Spec Explorer enables the tester to generate a finite but representative set
of parameters for the methods. Also, the tester can indicate a collection of predicates
and other functions with finite (and typically small) domains and then follow only the
values of these functions during the exploration of the model [13]. These and other
ways of reducing the state space are part of a finite state machine (FSM) generation
algorithm implemented in the Spec Explorer tool; the details fall outside the scope
of this paper. The theoretical foundations of the tool are described in [8]. The tool is
available from [1].

The game that we are describing is an example of so-called games against nature
which is a classical area in optimization and decision making under uncertainty going
back all the way to von Neumann [26]. Only one of the two players, namely the tester,
has a goal. The other player is disinterested and makes random choices. Such games
are also known as 1 1

2 -player games. We make a common assumption that the random
choices are made with respect to a known probability distribution. How do we know the
probability distribution? In fact, we usually don’t. Of course symmetry considerations
are useful, but typically they are insufficient to determine the probability distribution.
One approximates the probability distribution by experimentation.

The tester may have various goals. Typically they are cover-and-record goals e.g.
visit every state (or every state-to-state transition) and record everything that happened
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in the process. Here we study reachability games where the goal is to reach a final state.
It is easy to imagine scenarios where a reachability game is of interest all by itself. But
we are interested in reachability games primarily because they are important auxiliary
games. In an industrial setting, the tester often runs test suites that consist of many
test segments. The state where one test segment naturally ends may be inappropriate
for starting the next segment because various shared resources have been acquired or
because the state is littered with ancillary data. The shared resources should be freed
and the state should be cleaned up before the segment is allowed to end. Final states are
such clean states where a new segment can be initiated. And so the problem arises of
arriving at one of the final states.

It is a priori possible that no final state is reachable from the natural end-state of a test
segment. In such a case it would be impossible to continue a test suite. Spec Explorer
avoids such unfortunate situations by pruning the FSM so that that it becomes transient
in the following sense: from every state, at least one final state is reachable (unless IUT
crashes). The pruning problem can be solved efficiently using a variation of [10, Algo-
rithm 1] (which is currently implemented in Spec Explorer), or the improved algorithm
in [9, Section 4].

The tester cannot run a vast number of test segments by hand. The testing activity at
Microsoft gets more and more automated. The Spec Explorer tool plays an important
role in the process. Now is the time to expose a simplification that we made above
speaking about the tester making moves. It is a testing tool (TT) that makes moves. The
tester programs a game strategy into the TT.

The reachability games are so ubiquitous that it is important to compute optimal or
nearly optimal strategies for them. You compute a strategy once for a given game and
then you use it over and over many times. Since reachability games are so important for
us, we research them from different angles.

In Section 2, reachability games are formulated, analysed and solved by means of
linear programming and various known results, in particular [10, Theorem 9]. We as-
sociate a state dependent cost with each action. The optimal strategy minimizes the
expected total cost which is the sum of the costs incurred during the execution. We
observe that a reachability game can be viewed as a negative Markov decision process
with infinite horizon [22]; the stopping condition is the first arrival at a final state. This
allows us, in Section 3, to solve any reachability problem using the well known value
iteration method. Theorem 7.3.10 in [22] guarantees the convergence. In Section 4 we
provide experimental results by applying both methods to typical model programs us-
ing the Spec Explorer tool. Section 5 is devoted to related work. Section 6 gives a short
conclusion.

Often the value iteration method works faster than the simplex method, but linear
programming has its advantages and sheds some more light on the problem. In gen-
eral, the applicability of one method does not imply the applicability of the other. Spec
Explorer makes use of both, linear programming and value iteration, to generate strate-
gies. Recall that strategy generation happens upon completion of FSM generation and
a possible elimination of states from which no final state is reachable. The step of get-
ting from the model program to a particular test graph is illustrated with the following
example.
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s1

s3

s2

s′
3 s5

s4s′
2

?Deliver((0,hi),1)

Post(0,hi)

?Deliver((1,bye),0)

Post(1,bye)

?Deliver((0,hi),1)

Post(0,hi)

Post(1,bye)

?Deliver((1,bye),0)

Fig. 1. Sample test graph generated by Spec Explorer from the chat model; diamonds represent
passive states; ovals represent active states; links to s′

2 and s′
3 represent transitions to active mode;

observable actions are prefixed by a question mark

Example: Chat Session. We illustrate here how to model a simple reactive system.
This example is written in the AsmL specification language [16]. The chat session lets
a client post messages for the other clients. The state of the system is given by the
tuple (clients,queue,recipients), where clients is the set of all clients of
the session, queue is the queue of pending (sender,text) messages, and recipients

is the set of remaining recipients of the first message in the queue called the current
message.

var clients as Set of Integer
var queue as Seq of (Integer,String)
var recipients as Set of Integer

Posting a message is a controllable action. The action is enabled if the Boolean
expression given by the require clause holds. Notice that the second conjunct of the
enabling condition is trivially true if the queue is empty.

Post(sender as Integer, text as String)
require sender in clients and

forall msg in queue holds msg.First <> sender
if queue.IsEmpty then recipients := clients - {sender}
queue := queue + [(sender,text)]

Delivery of a message is an observable action. The current message must be de-
livered to all the clients other than the sender. Upon each delivery, the corresponding
receiver is removed from the set of recipients. If there are no more recipients for the
current message, the queue is popped and the next message (if any) becomes the cur-
rent one. In other words, the specification prescribes that the current message must be
delivered to all the recipients before the remainder of the queue is processed.

Deliver(msg as (Integer, String), recipient as Integer)
require not queue.IsEmpty and then

queue.Head = msg and recipient in recipients
if recipients.Size = 1 then
if queue.Length = 1 then recipients := {}
else recipients := clients - {queue.Tail.Head.First}
queue := queue.Tail

else recipients := recipients - {recipient}

A good example of a natural finality condition in this case is queue.IsEmpty, spec-
ifying any state where there are no pending messages to be delivered.
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If we configure the chat session example in Spec Explorer so that the initial state is
({0, 1}, [], {}) with two clients 0 and 1, where client 0 only posts “hi”, and client 1 only
posts “bye”, then we get the test graph illustrated in Figure 1. The initial state is s1, and
that is also the only final state with the above finality condition.

2 Reachability Games and Linear Programming

We use a modification of the definition of a test graph in [20] to describe nondetermin-
istic systems. A test graph G has a set V of vertices or states and a set E of directed
edges or transitions. The set of states splits into three disjoint subsets: the set V a of
active states, the set V p of passive states, and the set V g of goal states. Without loss of
generality, we may assume that V g consists of a single goal state g such that no edge
exits from g; the reduction to this special case is obvious.

There is a probability function p mapping edges exiting from passive nodes to posi-
tive real numbers such that, for every u ∈ V p,∑

(u,v)∈E

p(u, v) = 1. (1)

Notice that this implies that for every passive state there is at least one edge starting
from it, and we assume the same for active states. Finally, there is a cost function c from
edges to positive real numbers. One can think about the cost of an edge as, for example,
the time for IUT to execute the corresponding function call. Formally, we denote by G
the tuple (V, E, V a, V p, g, p, c).

We assume also that for all u, v ∈ V there is at most one edge from u to v. (This is not
necessarily the case in applications; the appropriate reduction is given in Section 2.3.)
Thus E ⊂ V × V . It is convenient to extend the cost function to V × V by setting
c(u, v) = 0 for all (u, v) /∈ E.

2.1 Reachability Game

Let G = (V, E, V a, V p, g, p, c) be a test graph and u a vertex of it. The reachability
game R(u) over G is played by a testing tool (TT) and an implementation under test
(IUT). The vertices of G are the states of R(u), and u is the initial state. The current
state of the game is indicated by a marker. Initially the marker is at u. If the current state
v is active then TT moves the marker from v along one of graph edges. If the current
state v is passive then IUT picks an edge (v, w) with probability p(v, w) and moves the
marker from v to w. TT wins if the marker reaches g. With every transition e the cost
c(e) is added to the total game cost.

A strategy for (the player TT in) G is a function S from V a to V such that (v, S(v)) ∈
E for every v ∈ V a. Let R(u, S) be the sub-game of R(u) when TT plays according
to S.

We would like to evaluate strategies and compare them. To this end, for every strat-
egy S, let MS[v] be the expected cost of the game R(v, S). Of course, the expected
cost may diverge, in which case we set MS [v] = ∞. We say that MS is defined if
MS [v] < ∞ for all v. If, for example, c reflects the durations of transition executions
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then MS reflects the expected game duration. The expected cost function satisfies the
following equations.

MS [g] = 0
MS [u] = c(u, S(u)) + MS [S(u)] for u ∈ V a (2)

MS [u] =
∑

(u,v)∈E

{p(u, v)(c(u, v) + MS [v])} for u ∈ V p

We call a strategy S optimal if MS [v] ≤ MS′ [v] for every strategy S′ and every
v ∈ V , or, more concisely, if MS ≤ MS′ for every strategy S′. How can we construct
an optimal strategy? Our plan is to show that the cost vector M of an optimal strategy
is an optimal solution of a certain linear programming problem. This will allow us to
find such an M . Then we will define a strategy S such that, for all active states u,

c(u, S(u)) + M [S(u)] = min
(u,v)∈E

{c(u, v) + M [v]}. (3)

We will define transient test graph and prove that the strategy S is optimal when the test
graph is transient.

Let us suppose from here on that the set V of states is {0, 1, ..., n − 1} and that the
goal state g = 0. Consider a strategy S over G. We denote by PS the following n × n
matrix of non-negative reals:

PS [u, v] =

⎧⎨
⎩

p(u, v), if u ∈ V p and (u, v) ∈ E ;
1, if u ∈ V a and v = S(u) or if u = v = 0;
0, otherwise.

(4)

PS [u, v] is the probability of the move (u, v) when the game R(u, S) is in state u, except
that there is no move from state 0. (We could have added an edge (0, 0) in which case
there would be no exception.) So PS is a probability matrix (also called a stochastic
matrix) [12] since all entries are nonnegative and each row sum equals 1.

A strategy S is called reasonable if for every v ∈ V there exists a number k such the
probability to reach the goal state within at most k steps in the game R(v, S) is positive.
Intuitively, a reasonable strategy may be not optimal but eventually it has some chance
of leading the player to the goal state.

Lemma 1. A strategy S is reasonable for a test graph G if and only if, for some k, there
exists, for each vertex v, a path Pv of length at most k from v to the goal state such that,
whenever an active vertex w occurs in Pv , then the next vertex in Pv is S(w).

Proof. The “only if” half is obvious, because a play in R(v, S) that reaches the goal
state in at most k steps traces out a path Pv of the required sort. For the “if” half, recall
that all the edges of G have positive probabilities. Thus, Pv has a positive probability
of being traced by a play of R(v, S), and so this game has a positive probability of
reaching g in at most k steps. ��

A nonempty subset U of V is closed if the game never leaves U after starting at any
vertex in U . If S is reasonable, no subset U of V − {g} is closed under the game
R(u, S), for any u ∈ U . This property is used to establish the following facts.
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We let P ′
S denote the minor of PS obtained by crossing out from PS row 0 and

column 0. The following lemma follows from [12, Proposition M.3].

Lemma 2. Let S be a reasonable strategy. Then

lim
k→∞

P ′
S

k = 0; (5)

∞∑
k=0

P ′
S

k = (I − P ′
S)−1. (6)

Reasonable strategies can be characterized in terms of their cost vectors as follows.
Complete proofs are given in [7].

Lemma 3. A strategy S is reasonable if and only if MS is defined. Moreover, if MS

is defined then M ′
S = (I − P ′

S)−1b′S where M ′
S and b′S are the projections to the set

V −{0} of the expected cost vector MS and the “immediate cost” vector bS defined by

bS[u] =
∑
v∈V

PS [u, v]c(u, v) (∀u ∈ V ).

A vertex v of a test graph is called transient if the goal state is reachable from v. We
say that a test graph is transient if all its non-goal vertices are transient. There is a close
connection between transient graphs and reasonable strategies.

Lemma 4. A test graph is transient if and only if it has a reasonable strategy.

In practice, the probabilities and costs in a test graph may not be known exactly. It is
therefore important to know that, as long as the graph is transient, the optimal cost is
robust, in the sense that it is not wildly sensitive to small changes in the probabilities
and costs. This sort of robustness is, of course, just continuity, which the next lemma
establishes.

Lemma 5. For transient test graphs, the optimal cost vector M is a continuous function
of the costs c(u, v) and the probabilities p(u, v).

Proof. Throughout this proof, “continuous” means as a function of the costs c(u, v)
and the probabilities p(u, v).

Temporarily consider any fixed, reasonable strategy S for the given test graph.
Thanks to Lemma 1, S remains reasonable when we modify the probabilities (and costs)
as long as they remain positive.

The formula for bS in Lemma 3 shows that this vector is continuous. So is the matrix
I − P ′

S . Since the entries in the inverse of a matrix are, by Cramer’s rule, rational
functions of the entries of the matrix itself, we can infer the continuity of (I − P ′

S)−1

and therefore, by Lemma 3, the continuity of M ′
S. Since the only component of MS

that isn’t in M ′
S is 0, we have shown that MS is continuous.

Now un-fix S. The optimal cost vector M is simply the component-wise minimum
of the MS , as S ranges over the finite set of reasonable strategies. Since the minimum
of finitely many continuous, real-valued functions is continuous, the proof of the lemma
is complete. ��
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Of course, we cannot expect the optimal strategy to be a continuous function of the
costs and probabilities. A continuous function from the connected space of cost-and-
probability functions to the finite space of strategies would be constant, and we certainly
cannot expect a single strategy to be optimal independently of the costs and probabili-
ties. Nevertheless, the optimal strategies are robust in the following sense.

Suppose S is optimal for a given test graph, and let an arbitrary ε > 0 be given.
Then after any sufficiently small modification of the costs and probabilities, S will still
be within ε of optimal. Indeed, the continuity, established in the proof of Lemma 5,
of the function MS and of its competitors MS′ arising from other strategies, ensures
that, if we modify the costs and probabilities by a sufficiently small amount, then no
component MS will increase by more than ε/2 and no component of any MS′ will
decrease by more than ε/2. Since MS ≤ MS′ before the modification, it follows that
MS ≤ MS′ + ε afterward.

A similar argument shows that, if S is strictly optimal for a test graph G, in the sense
that any other S′ has all components of MS′ strictly larger than the corresponding
components of MS , then S remains strictly optimal when the costs and probabilities
are modified sufficiently slightly. Just apply the argument above, with ε smaller than
the minimum difference between corresponding components of MS and any MS′ .

2.2 Linear Programming

Ultimately, our goal is to compute optimal strategies for a given test graph G. We start
by formulating the properties of the expected cost vector M as the following optimiza-
tion problem. Let d be the constant row vector (1, ..., 1) of length |V | = n.

LP: Maximize dM , i.e.
∑

u∈V M [u], subject to M ≥ 0 and

⎧⎪⎨
⎪⎩

M [0] ≤ 0
M [u] ≤ c(u, v) + M [v] for u ∈ V a and (u, v) ∈ E

M [u] ≤
∑

(u,v)∈E{p(u, v)(c(u, v) + M [v])} for u ∈ V p

Intuitively, a feasible solution M to LP, e.g. M = 0, approximates an expected cost
vector from below. Assuming that an optimal solution exists, the larger the value of dM
is for a feasible solution M , the closer M is to an optimal cost vector.

Test graphs reduce to a subclass of negative stationary Markov decision processes
(MDPs) with an infinite horizon, where rewards are negative and thus regarded as costs,
strategies are stationary, i.e. time independent, and there is no finite upper bound on the
number of steps in the process. A transient test graph reduces to a negative MDP where
the probability to reach the goal from every state is positive. The optimization crite-
rion for our strategies corresponds to the expected total reward criterion, rather than the
expected discounted reward criterion used in discounted Markov decision problems.
The total reward optimization problem is in general harder than the discounted reward
optimization problem. However, for this subclass of negative MDPs the total reward op-
timization problem is known to be solvable by linear programming and yields a unique
optimal solution [10, Theorem 9]. From Alfaro’s Theorem 9 [10] we get the following
corollary for test graphs. A careful self-contained proof of the corollary is given in [7].
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Corollary 1. The following statements are equivalent for all test graphs G.

(a) G is transient.
(b) G has a reasonable strategy.
(c) LP for G has a unique optimal solution M . Moreover, M = MS for some strategy

S and the strategy S is optimal.

Now we presume that the test graph is transient and show how to construct an optimal
strategy. By applying Corollary 1 and solving LP, find the cost vector M of some opti-
mal strategy O. In our notation, M = MO. Construct strategy S so that equation (3) is
satisfied for every active state u.

Proposition 1. The constructed strategy S is optimal.

Notice that, even though an optimal strategy S yields a unique cost vector MS , S itself
is not necessarily unique. Consider for example a test graph without passive states and

with edges {1 1→ 2, 2 10→ 0, 1 10→ 3, 3 1→ 0} that are annotated with costs; clearly both
of the two possible strategies are optimal.

2.3 Graph Transformation

We made the assumption that for each two vertices in the graph there is at most one
edge connecting them. Let us show that we did not lose any generality by assuming
this. For an active state u and for any v ∈ V let us choose an edge leading from u to
v with the smallest cost and discard all the other edges between u and v. For a passive
state u replace the set of multiple edges D between u and v with one edge e such that
p(e) =

∑
e′∈D p(e′) and c(e) = (

∑
e′∈D p(e′)c(e′))/p(e). This merging of multiple

edges into a single edge does not change the expected cost of one step from u. The graph
modifications have the following impact on LP. With removal of the edges exiting from
active states we drop the corresponding redundant inequalities. The introduction of one
edge for a passive state with changed c and p functions does not change the coefficients
before M [v] in LP in the inequality corresponding to passive states and therefore does
not change the solution of LP.

2.4 Graph Compression

Every test graph is equivalent, as far as our optimization problems are concerned, to one
in which no edge joins two passive vertices. The idea is to replace the edges leaving a
passive vertex u in the following manner. Consider all paths emanating from u, passing
through only passive vertices, but then ending at an active vertex or the goal vertex.
Each such path has a probability, obtained by multiplying the probabilities of its edges,
and it has a cost, obtained by adding the costs of its edges. Replace each such path
by a single edge, from u to the final, active vertex in the path; give this new edge
the same probability and cost that the path had. If this replacement process produces
several edges joining the same pair of vertices, transform them to a single edge as in
Subsection 2.3. The details of test graph compression are given in [7].

One may wonder if such a compression is worthwhile. The answer depends to a
great extent on the topology of the test graph. It may sometimes pay off to apply the
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Fig. 2. a) Test subgraph obtained by exploring the extended chat model with 3 clients up to the
posting phase; transitions from passive states (diamonds) are labeled by the respective client
entering the session. b) Same subgraph after compression.

compression to certain subgraphs of the full test graph, rather than to the whole test
graph. Let us illustrate a fairly common situation that arises in testing highly concurrent
systems where the compression would reduce the number of states and edges. We re-
visit the chat model above and extend it as follows. There is an additional state variable
nClients representing the number of clients entering in the chat session, so the state is
given by the tuple (nClients,clients,queue,recipients). There is a new con-
trollable action Start that starts the entering phase of clients by updating nClients.
There is also a new observable action Enter representing the event of a client entering
the session. A client that has already entered the session cannot enter it again.

var nClients as Integer

Start(n as Integer)
require nClients = 0 and n > 0
nClients := n

Enter(c as Integer)
require nClients > 0 and c in {0..nClients-1} - clients
clients := clients + {c}

Assume also that the enabling condition (require clause) of the Post action is
extended with the condition that the entering phase was started and that all clients have
entered the session, i.e., nClients > 0 and clients.Size = nClients. So the
“posting” phase is not started until all clients have entered the session. Suppose that
the initial state s0 is (0, ∅, [], ∅). By generating the FSM from the model program with
3 clients, the initial part of the test graph up to the posting phase that starts in state
s1 is illustrated in Figure 2.a. The compression of the subgraph between the states s0
and s1 would yield the subgraph shown in Figure 2.b with a single passive state p and
a transition from p to s1 representing the composed event of all three clients having
entered the session in some order.

The effect of the compression algorithm is in some cases, such as in this exam-
ple, similar to partial order reduction. Obviously, reducing the size of the test graph
improves feasibility of the linear programming approach. However, for large graphs
we use the value iteration algorithm, described next. Due to the effectiveness of value
iteration the immediate payoff of compression is not so clear, unless compression is
simple and the number of states is reduced by an order of magnitude. We are still in-
vestigating the practicality of compression and it is not yet implemented in the Spec
Explorer tool.
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3 Value Iteration

Value iteration is the most widely used algorithm for solving discounted Markov deci-
sion problems (see e.g. [22]). Reachability games give rise to non-discounted Markov
decision problems. Nevertheless the value iteration algorithm applies; this is a practical
approach for computing strategies for transient test graphs.

Let G = (V, E, V a, V p, g, p, c) be a test graph. The classical value iteration algo-
rithm works as follows on G.

Value iteration. Let n = 0 and let M0 be the zero vector with coordinates V so that
every M0[u] = 0. Given n and Mn, we compute Mn+1 (and then increment n):

Mn+1[u] =

⎧⎨
⎩

min(u,v)∈E{c(u, v) + Mn[v]}, if u ∈ V a;∑
(u,v)∈E p(u, v)(c(u, v) + Mn[v]), if u ∈ V p;

0, if u = 0.
(7)

Value iteration for negative MDPs with the expected total reward criterion, or neg-
ative Markov decision problems for short, does not in general converge to an optimal
solution, even if one exists. However, if there exists a strategy for which the expected
cost is finite for all states [22, Assumption 7.3.1], then value iteration does converge
for negative Markov decision problems, see [22, Theorem 7.3.10] or [10, Theorem 10].
In light of lemmas 3 and 4, this implies that value iteration converges for transient test
graphs. Let us make this more precise, as a corollary of Theorem 7.3.10 in [22] or
Theorem 10 in [10].

Corollary 2. Let G be a transient test graph as above. For any ε > 0, there exists N
such that, for all n ≥ N and all states u ∈ V , M∗[u] − Mn[u] < ε, where M∗ is the
optimal cost vector.

The iterative process, generally speaking, does not reach a fixed point in finitely many
iterations. Consider the test graph in Figure 3. It is not difficult to calculate that the

1 2 01

3

{1, 2
3 }{1, 1

3 }

Fig. 3. Sample test graph; transitions from active states are labeled by their costs; transitions from
passive states are labeled by their costs and probabilities

infinite sequence (Mn[1])∞n=1 computed by (7) is

1, 2, 2 1
3 2 2

3 , 2 7
9 , 2 8

9 , 2 25
27 , 2 26

27 , . . . , 2 3i−2
3i , 2 3i−1

3i , . . .

that converges to M∗[1] = 3.
When should we terminate the iteration? Given a cost vector M let SM denote any

strategy defined so that equation (3) is satisfied for every active state u. Further, let
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Sn = SMn . Observe that the total number of possible strategies is finite and that any
non-optimal strategy occurs only finitely many time in the sequence S0, S1, . . . . Thus,
from some point on, every Sn is optimal. In reality, the desired n is typically not that
large because the convergence of the computed costs towards the optimal costs is ex-
ponentially fast. For practical purposes, the iteration process halts when the additional
gain is absorbed in rounding errors.

4 Experiments

We have conducted some experiments in Spec Explorer in order to evaluate which ap-
proach performs better on test graphs that arise from typical model programs, whether
linear programming implemented by the simplex method or value iteration. Even for
small examples the value iteration method has outperformed linear programming, and
we are yet to find examples for which linear programming would be preferable. For
some test graphs with several thousand vertices, the straightforward value iteration
method as described above is also inadequate. We are currently investigating exten-
sions of the value iteration method as well as the use of graph compression explained
above. Table 1 compares the running times of the value iteration and simplex method
for test graphs generated from the following two sample problems. Both examples are
available in the Spec Explorer distribution [1].

Table 1. Comparison of value iteration and linear programming on sample problems

Sample
problem

Number of vertices
in test graph

Value iteration
running time

Simplex
running time

Ratio simplex/
value iteration

Chat 40 4ms 33ms 8
Chat 92 25ms 370ms 15
Chat 225 100ms 7000ms 70
Bag 128 19ms 635ms 34
Bag 277 135ms 5600ms 41

Chat. Described in Section 1.
Bag. A multi-threaded implementation of a bag (multiset). Several concurrent users

are allowed to add, delete and lookup elements from a shared bag. The example is
a variation of a case study used in [23].

The different test graph sizes for Chat and Bag arise by varying the exploration
settings using the Spec Explorer tool in a way that was illustrated on a smaller scale
with that Chat model in Section 1. To motivate the relevance of the different cases in
the table let us take a closer look at the two test graphs generated from the Bag model.

In the case with 128 vertices, the number of users (that equals the number of concur-
rent threads in the implementation) is 2 and the maximum allowed size of the bag is 1.
This configuration yields an exploration of the state space with all the possible inter-
leavings of the bag operations performed by the users. The test suite generated from the
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test graph gives a global strategy to cover all the interleavings of the observable thread
operations.

The case with 277 vertices corresponds to a situation when the maximum bag size
is 2 elements and again there are 2 users. This provides a test suite that, in particular,
covers the scenario when one of the users tries to remove all occurrences of a particular
element and the other user tries to add that element to the bag.

The numbers 128 and 277 are in the range where the solutions are not obvious to
the tester but the state graph is small enough for visual inspection and overview. The
accepting state in both cases is the state where both users or threads are inactive.

The implementation of the bag example in the distribution [1] has a locking error
that can only be discovered with at least two concurrent users accessing the bag.

5 Related Work

Extension of the FSM-based testing theory to nondeterministic and probabilistic FSMs
got some attention a while ago [14, 21, 28]. The use of games for testing is pioneered in
[2]. A recent overview of using games in testing is given in [27].

An implementation that conforms to the given specification can be viewed as a re-
finement of the specification. In study [11], based on [3], the game view is proposed
as a general framework for dealing with refining and composing systems. Models with
controllable and observable actions correspond to interface automata in [11].

Model-based testing allows one to test a software system using a specification (a.k.a.
model) of the system under test [5]. There are other model-based testing tools
[4, 17, 18, 19, 24]. To the best of our knowledge, Spec Explorer is currently alone in
supporting the game approach to testing. Our models are Abstract State Machines [15].
In Spec Explorer, the user writes models in AsmL [16] or in Spec# [6]. The theoretical
foundations of the tool are described in [8].

In [20] several algorithms are described that generate optimal length-bounded strate-
gies from test graphs, where optimality is measured by minimizing the total cost while
maximizing the probability of reaching the goal, if the goal is reachable. The problem
of generating a strategy with optimal expected cost is stated as an open problem in [20].

Solving negative and positive Markov decision problems with the total reward cri-
terion are studied in [10] to address the basic problems of computing the minimum
and maximum probability or the minimum and maximum expected time to reach a tar-
get set in a probabilistic system. In particular, the problem of computing the minimum
expected time can be reduced to the negative Markov decision problem with the total
reward criterion. In this paper we used Alfaro’s Theorem 9 [10], which shows that lin-
ear programming works for negative MDPs after eliminating vertices from which the
target state is not reachable, and that the optimal solution of the LP is unique.

One may wonder how transient stochastic games [12, Section 4.2] are related to
transient test graphs. A transient stochastic game is a game between two players that
will stop with probability 1 no matter which strategies are used. This condition gives
rise to a proper subclass of transient test graphs where all strategies are reasonable.
Recall that a test graph is transient if and only if there exists a reasonable strategy. An
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unreasonable strategy is for example a strategy that takes you back and forth between
two active states.

6 Conclusion

One of the main contributions of this paper is the identification of reachability games
on transient test graphs as a fundamental notion in the area of testing of probabilistic
systems. We show how known results, especially those on Markov decision process
theory, can be used for a powerful effect in the context of testing. We provide some
experimental results. And we worked out a careful self-contained exposition [7] of all
the material. Finally let us note that this paper addresses a relatively easy case when
all the states are known in advance. The more challenging (and important) case is on-
the-fly or online testing where new states are discovered as you go [25]. In a sense, this
paper is a warmup before tackling on-the-fly test strategy generation.
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A Note on an Anomaly in Black-Box Testing
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Abstract. Testing should not reduce confidence in the system under
test – unless defects are found. We show that for a general class of finite-
state systems this intuition is incorrect. We base our argument on the
view of risk as a probability. We calculate the risk of having an invalid
implementation, based on a concrete, believable fault model, and show
that executing correct test runs can actually decrease confidence in the
system under test. This anomaly is important as it explains some of the
difficulty in establishing mathematical links between fault models and
testing efficiency. The presented anomaly itself is claimed to be indepen-
dent of the particular structure of systems. We provide critique of the
result, and discuss the potential limits of the presented anomaly as well
as ways to remedy it.

1 Introduction

Three years ago, we took part in an academic research project at a local univer-
sity. The project was about formal black-box testing based on Petri nets. [9, 13]
Quite early, the researchers from the university suggested that testing coverage
could be measured by calculating the number of Petri net places or transitions
that have been visited during testing. We asked from the researchers if there
would be a mathematical way to argument for such coverage metrics. For ex-
ample, could it be possible to prove mathematically that it is more beneficial to
count transitions than places?

We found soon that such a quantitative analysis would not be possible with-
out a fault model. We considered informally simple fault models such as the
“disappearing” of pre-places from Petri net transitions with a uniform proba-
bility. But we run into problems like that multiple mutations or faults could
cancel each others and result in a conforming system, making it very difficult to
calculate even the a priori probability of a conformant implementation [7, 8].

When the project ended, no conclusion had been reached. We continued to
study the issue, considering simple finite-state models and simple but reason-
able fault models for them. In our view, a coverage metric would be better than
another metric if its increase would correlate with a faster increase in confidence
in the system under test than the other one. Eventually we found a strange phe-
nomenon: it would be possible to test systems so that passing test runs would
actually decrease confidence and increase the risk of an erroneous implementa-
tion. In this paper, we report our findings regarding this anomaly and provide a
critical view on them.

W. Grieskamp and C. Weise (Eds.): FATES 2005, LNCS 3997, pp. 47–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Short Description of the Anomaly. For an informal description of the result, let
us define the following observations:

T : A small amount of testing has been done
T ′ : A large amount of testing has been done
C : No defect has been detected during testing
D : The SUT has potential to work incorrectly in general

The anomaly is that in the context of testing a black-box SUT, P(C|T ) ≥
P(C|T ′) is in general true whereas P(D|C, T ) ≥ P(D|C, T ′) is not. In words, the
probability of having spotted a defect does not decrease when testing progresses
(an obvious fact), but the probability that the SUT is actually incorrectly im-
plemented may increase at the same time as testing progresses without finding
defects at all. To paraphrase, it is possible to execute test runs that all terminate
with “pass”, and yet the risk that the system might work incorrectly increases.

This is not an anomaly in testing per se, neither a problem with mathematics.
The point we want to make is that this anomaly exists in the conventional
thinking about black-box testing. Even though it does not in any way diminish
the value of the current large body of black-box testing theory and methodology,
we believe that this anomaly should be reported and studied further.

Related Work. The main research topics related to this note are the testing of
finite-state systems [3], in particular the ioco-theory [15, 16], and the research
on fault models [10, 11]. As this is a technical note, we assume that the reader
is familiar with these subjects. Further pointers to the literature are included in
the text below.

2 Mathematical Model

We will now proceed to establish a mathematical model in which to describe the
anomaly in detail.

2.1 Bit Transducers

Let B denote the set {0, 1}, i.e. the set of bits. We introduce first a simple model
of nondeterministic finite-state systems, capable of input and output over the
alphabet B.

Definition 1 (Bit Transducers). A bit transducer is a tuple 〈Q, i, Δ〉 where
(1) Q is a finite set of states, (2) i ∈ Q is an initial state, and (3) Δ : Q×B ×
B → Q × B is a transition function.

A bit transducer is a device that implements a process that transforms a bit
string into another bit string, i.e. provides mappings Bn → Bn for all n ∈ N.
The transition function of a bit transducer maps a present control state, an in-
put bit, and a random bit into a next control state and an output bit. Thus,



A Note on an Anomaly in Black-Box Testing 49

⊗
1

��0 ��

�
�

� � � � �

⊗

0
��													

�������	
��
����a

0 ��

1 ��

��������b

0��

1��⊗

0

��													 ⊗

0

		�������������

1






 � � 

�
�

�

The transducer on the left has two states: a and b,
a being the initial state. The arcs from the state
symbols to ⊗–nodes denote inputs, the ⊗–nodes
random choices, and the arcs from ⊗–nodes the
outputs and the next control states. The dashed
arcs correspond to the random bit 1 and the solid
arcs to 0. When only a solid arc is drawn out of
a ⊗–node, the behavior does not depend on the
random bit source.

Fig. 1. The bit transducer T

a bit transducer has access to a random bit source and by this source imple-
ments a probabilistic process. In other words, bit transducers are nondetermin-
istic systems. This is reasonable because tested systems in practice are often
nondeterministic, for example due to environmental factors.

Example 1. In Fig. 1, we present a simple bit transducer that we use as an
example throughout this paper. We give to this transducer the name T. As a
mathematical object, T can be characterized by T = 〈{a, b}, a, Δ〉 where

Δ = [〈a, 0, 0〉 �→
〈
b, 1

〉
, 〈a, 0, 1〉 �→

〈
b, 0

〉
, 〈a, 1, 0〉 �→

〈
b, 0

〉
, 〈a, 1, 1〉 �→

〈
b, 0

〉
,

〈b, 0, 0〉 �→
〈
a, 0

〉
, 〈b, 0, 1〉 �→

〈
a, 0

〉
, 〈b, 1, 0〉 �→

〈
a, 0

〉
, 〈b, 1, 1〉 �→

〈
b, 1

〉
]. (1)

We put a line over all output bits throughout this paper. This line carries no
mathematical meaning but is provided purely as a visual hint to the reader.

The following definition describes the operation of a bit transducer.

Definition 2 (Execution of Bit Transducers). Let I, R ∈ Bn for n ∈ N be
two bit strings of length n and let B = 〈Q, i, Δ〉 be a bit transducer. The output
of B on 〈I, R〉 is the bit string O ∈ Bn if and only if there exists a sequence of
states q0, . . . , qn such that

1. q0 = i, and
2. ∀k ∈ {1, . . . , n} : Δ(〈qk−1, I[k], R[k]〉) = 〈qk, O[k]〉.

(Here I[k] denotes the kth element of the bit string I, I[1] being the first element.)

The idea of the random bit source of a bit transducer is that it is not visible.
Hence, we assume a uniform distribution of random bit strings, and get the
following definition:

Definition 3 (Probability of Output). Let I ∈ Bn and let B be a bit trans-
ducer. Then B is said to produce the output O ∈ Bn on the input I with the
probability

p =
|{R ∈ Bn | O is the output of B on 〈I, R〉}|

2n
. (2)

We denote this probability p by P(O|I, B).
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Definition 4 (Traces). A trace is a pair 〈I, O〉 where I, O ∈ Bn for some
n ≥ 0. For a bit transducer B, tr B denotes the traces of B, defined as

tr B = {〈I, O〉 | P(O|I, B) > 0}. (3)

Example 2. Consider the transducer T in Fig. 1. On the input 000, the trans-
ducer produces the output 101 with probability 1

4 and the output 111 with
probability 0. Because 2−3 = 1

8 , there are two distinct random bit strings on
which the output 101 is produced. These are 101 and 111; namely, the transition
back from b to a on input 0 does not depend on the random bit; technically both
bit values map to the same output bit and destination state (see Ex. 1).

Rationale for the System Model. Bit transducers are simple finite-state
systems. Finite-state systems have been examined extensively in the literature
of formal testing theory.

Relation to IOTSes. In particular, an injective morphism into the domain of
IOTSes [16] can be provided easily, as shown next.

Definition 5 (IOTSes). An IOTS is a tuple 〈Q, i, ΣI , ΣO, Δ〉 where Q is a
set of states, i ∈ Q is an initial state, ΣI is an input alphabet, ΣO is an output
alphabet, the alphabets are disjoint and do not contain τ , and Δ ⊆ Q×(ΣI∪ΣU∪
{τ}) × Q is a transition relation such that ∀q ∈ Q, a ∈ ΣI : ∃k ∈ N, q1, . . . , qk ∈
Q : 〈q, τ, q1〉 ∈ Δ, 〈q1, τ, q2〉 ∈ Δ, · · · , 〈qk−1, a, q〉 ∈ Δ.

Definition 6 (Path Notation). If q is a state of an IOTS 〈Q, i, ΣI , ΣO, Δ〉
and w = w1 · · ·wk ∈ (ΣI ∪ ΣO ∪ {τ})∗, we write q

w−→ q′ to denote

∃q0, . . . , qk : q = q0 ∧ qk = q′ ∧ ∀i ∈ {1, . . . , k} : 〈qi−1, wi, qi〉 ∈ Δ. (4)

Furthermore, we write q
w−→ to denote ∃q′ : q

w−→ q′ and finally L
w−→ as a

shorthand for i
w−→ when i is the initial state of L.

A bit transducer B can be mapped to a similar (in a sense shown below) IOTS L.
We provide an intensional characterization of this mapping. We mark by B ≈ L
the proposed similarity, defined as follows:

Definition 7 (Similarity Between IOTSes and Bit Transducers). A bit
transducer B = 〈Q, i, Δ〉 and an IOTS L = 〈Q′, i′, ΣI , ΣO, Γ 〉 are similar, de-
noted by B ≈ L, iff (1) ΣI = {0, 1}, (2) ΣO = {0, 1}, (3) Q′ = Q × {W, 0, 1},
(4) i′ = 〈i, W 〉, and (5) 〈〈q, b〉 , α, 〈q′, b′〉〉 ∈ Γ iff either

α ∈ {0, 1} ∧ b = W ∧ b′ = α ∧ q = q′, (5)
α ∈ {0, 1} ∧ b ∈ {0, 1} ∧ b′ = b ∧ q = q′, or (6)

α ∈ {0, 1} ∧ b ∈ {0, 1} ∧ b′ = W ∧ ∃r : Δ(〈q, b, r〉) = 〈q′, α〉 . (7)
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It now follows that if B ≈ L and B produces output b1 · · · bn on input b1 · · · bn,

then L
b1b1···bnbn−−−−−−−→. Similarly, if L

b1b1···bnbn−−−−−−−→, then B produces output b1 · · · bn on
the input b1 · · · bn (straightforward proofs omitted). Hence, B and L can be seen
to be similar systems. Thus, bit transducers form, at least behaviorally, a subclass
of IOTSes. This should guarantee that the system model in itself is realistic.

Nondeterministic and probabilistic [1] systems are commonly discussed, and
appear also in the practice. Often the nondeterminism of a system under test is
caused by environmental factors that are not under the test system’s control.

In order to be able to analyse nondeterministic systems with probability
theory, nondeterministic choice points must be associated with a probabilistic
model. We have fixed the probability 1

2 for every nondeterministic choice (bit
transducers have only binary branchings). Another option would have been to
allow every branch point to be associated with real-valued branching probabili-
ties, or to consider a more mathematically challenging class of Markov models.
These have been studied widely, also in the context of testing [17]. However,
because we eventually argue that the anomaly that we wish to present here is
not strongly tied to the system model itself, we feel that it is acceptable to stick
with this simple model of probabilistic choice.

2.2 Specifications

Because bit transducers only map bit strings to bit strings, there is no built-
in notion of correctness for them. Therefore, we need also a domain of func-
tional requirements or system specifications with which implementations can be
compared. We use bit transducers also as system specifications in the following
manner:

Definition 8 (Correct Traces). Let B be a bit transducer. A trace 〈I, O〉 is
correct with respect to B iff 〈I, O〉 ∈ tr B, i.e. iff P(O|I, B) > 0.

In other words, it is correct to produce O on input I according to a specification
(which is also a bit transducer) B if there exists at least one execution in B that
produces O from I. This definition avoids a probabilistic definition of correctness,
which may be debatable. But in the current testing practice, functional testing
requirements are usually non-probabilistic, and functional black-box testing is
a vividly researched and practiced art. There are forms of testing that include
probabilistic analysis such as load and scalability testing, but we do not consider
them here.

Example 3. Based on the observations of Ex. 2, the trace
〈
000, 101

〉
is correct

with respect to T but the trace
〈
000, 111

〉
is not.

We can now define what is a correct implementation of a specification:

Definition 9 (Correct Implementations). Let BS be a bit transducer (a
specification) and BI a bit transducer (an implementation). BI is correct with
respect to BS if and only if

P(O|I, BI) > 0 =⇒ 〈I, O〉 is correct w.r.t. BS (8)
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which yields a reflexive and transitive conformance relation (a preorder) that can
be written in the form

BI �tr BS ⇐⇒def tr BI ⊆ tr BS . (9)

In other words, an implementation may implement a subset of the behavior of
its specification but not a superset.

Rationale for the Specification Model. First, the idea of using the same
formalism for specifications and systems is not new, and has been extensively
used e.g. in the study of the famous ioco-theory [15, 16].

The idea that specifications should not be probabilistic can be also traced
down to this same theory. Namely, in ioco every trace is either valid or invalid,
and no probabilistic interpretation of implementations is a part of the standard
theory.

In what follows we will find that our specifications are in a sense non-
probabilistic but implementations are probabilistic. We strongly disagree with a
view that this would diminish the importance of our result. First, we have not evi-
dence that the reported anomaly could not occur in the context of deterministic
implementations – it can be enough to have a probabilistic fault model. Sec-
ond, all real-world implementations of nondeterministic systems are in practice
probabilistic in one way or another. At the same time, functional specifications
are seen often as non-probabilistic, and test runs yield non-probabilistic verdicts
(pass, fail). Hence, if the disrepancy between non-probabilistic specifications and
probabilistic implementations would turn out to be the cause for the reported
anomaly, it should be clearly identified as a topic for future research.

2.3 Fault Model

We have now functional requirements and implementations. What is missing
is the concept of a fault model. We take the following general view: a fault
model maps a specification to a probability distribution of implementations.
As the concrete fault model we choose the following: when a specification is
implemented, there is a uniform probability for every single output bit being
unwantedly toggled. To simplify, we let this probability by 1

2 . It is unrealistically
high, but because our whole analysis is eventually qualitative, nothing is lost.
Thus the following definition:

Definition 10. Let BS = 〈Q, i, Δ〉 be a bit transducer (functioning as a system
specification). Then BI = 〈Q, i, Γ 〉 is a potential implementation of BS if and
only if for every q ∈ Q and i, r ∈ B it holds that

∃o, o′ ∈ B, q′ ∈ Q : Δ(〈q, i, r〉) = 〈q′, o〉 ∧ Γ (〈q, i, r〉) = 〈q′, o′〉 . (10)

In the fault model, the probability of every such a potential implementation of BS

is 2−4|Q|. We denote this probability by P(BI |BS), and denote the set of potential
implementations (“mutants”) of BS by impl BS. To simplify notation, we define
that P(B|BS) = 0 for all B /∈ impl BS.
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Fig. 2. Those potential implementations of T which are correct w.r.t. T. Four cor-
rect implementations follow the template on the left, where an instance of ∗ can be
replaced with either 0 or 1. One of these is the original specification T itself. The fifth
correct implementation is the transducer on the right, which produces always a string
containing only zeroes.

We are now ready to commence an analysis employing standard probability
theory. First, we can calculate the a priori probability that a specification is
correctly implemented:

Definition 11. We denote by P(correct|BS) the a priori probability that BS is
correctly implemented, defined as

P(correct|BS) =
∑

BI :BI�trBS

P(BI |BS) (11)

Example 4. Consider the bit transducer T. There are 256 potential implementa-
tions of T (24·2); thus each one has a priori probability of 2−8. Of these potential
implementations, five are correct w.r.t. T. These are illustrated in Fig. 2.

Hence, the a priori probability for an implementation of T being correct is,
under the given fault model, P(correct|T) = 5 · 2−8 ≈ 0.0195.

Rationale for the Fault Model. According to Petrenko [10, 11], a fault
model includes a specification, the conformance relation, and the set of possible
implementations. It is not difficult to see that our approach is not fundamentally
different, even though we have separated the conformance relation (9) from the
fault model, and our fault model includes a known probability distribution on
the implementations.

The structure of our particular fault model is that there is a certain, fixed
probability on the mutation of a transition label. Thus the set of implementations
in our fault model is finite. This general approach was used, for instance, as a
basis for test derivation by Petrenko et al. [12]. The idea of a bit-flip fault is
prevalent in the domain of hardware testing [14].

Another known fault model is to consider all finite state machines upto a
certain size limit [4]. It can be argued that under such a fault model implemen-
tations bear no a priori link to their specifications – from some viewpoints an
unrealistic assumption. It is unclear to us whether the presented anomaly can
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surface in the context of such fault models where there is no real link between
implementations and specifications.

2.4 Analysis

We have now set the wheels in motion; probabilistic analysis will lead us to
our goal. The idea is to compute the a posteriori probability that an implemen-
tation is correct, given a trace that has been observed to be produced by the
implementation.

Thus, let BS be a specification and let 〈I, O〉 be trace. If this is not correct
w.r.t. BS , then the probability that the implementation itself is correct must be
zero. Hence, we consider now the case of a correct trace, which corresponds to
the idea of a test run that has passed. Thus, assume 〈I, O〉 ∈ tr BS .

The a priori probability for producing output O on the input I by an unknown
implementation of BS is given by

Pspec(O|I, BS) =
∑
BI

P(BI |BS)P(O|I, BI). (12)

Example 5. Consider the trace 〈0, 1〉 which is correct w.r.t. T. The a priori
probability for this observation, given T as a specification, under the given fault
model, is exactly 1

2 .

We have now calculated both the a priori probability for an implementation’s
correctness (11), as well as the a priori probability for a certain output on a
certain input (12). What we need yet is the probability of an output given an
input and the assumption that the implementation producing the output is in
fact correct. This can be calculated as:

P(O|I, BS , correct) =

∑
BI :BI�trBS

P(BI |BS)P(O|I, BI )∑
BI :BI�trBS

P(BI |BS)
(13)

where the denominator is actually P(correct|BS) (11).
Hence, we can invoke the Bayes’ rule [6] and calculate the a posteriori prob-

ability that a particular implementation of the specification is actually correct.
We denote this by P(correct|O, I, BS):

P(correct|O, I, BS) =
P(correct|BS)P(O|I, BS , correct)

Pspec(O|I, BS)
. (14)

Example 6. Note that if P (BI |BS) is constant for all BI (all implementations
are equiprobable, which is the case in our example), this can be simplified to∑

BI :BI�trBS
P(O|I, BI)∑

BI
P(O|I, BI)

. (15)

Example 7. Consider the trace
〈
0, 1

〉
and the bit transducer T. We know

from Ex. 4 that an implementation of T is correct by a priori probability
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P(correct|T) ≈ 0.0195. Furthermore, by Ex. 5 it is known that the trace
〈
0, 1

〉
has a priori probability of Pspec(1|0,T) = 0.5 of being produced by an imple-
mentation of T (implementations distributed by the fault model).

Furthermore, we know that there are five correct potential implementations
of T (see Fig. 2). We calculate the probability P(1|0,T, correct) as

P(1|0,T, correct) =
2−8 · (0 + 0.5 + 0.5 + 1 + 0)

5 · 2−8 = 0.4. (16)

Hence, we can invoke (14), obtaining

P(correct|1, 0,T) ≈ 0.0195 · 0.4
0.5

= 0.0156. (17)

But note that this probability is less than 0.0195, the a priori probability for
the implementation’s correctness (which corresponds also to the a posteriori
correctness probability after empty input and output – it is naturally the same).

The same effect occurs also with longer inputs and outputs, for example〈
001100, 100100

〉
is correct w.r.t. T, yet

P(correct|100100, 001100,T) ≈ 0.083 (18)

which is significantly less than

P(correct|10010, 00110,T) ≈ 0.125. (19)

Example 8. Let us now consider the infinite sequence of inputs and outputs

i1 = 01, o1 = 10, i2 = 0101, o2 = 1010, i3 = 010101, o3 = 101010, . . . (20)

For all k > 0, let Ak denote the probability P(ok|ik,T) and Ck the probability
P(ok|ik,T, correct).

At the initial state a, correct mutants will produce the output 1 on the input 0
with the probability 2

5 . There are only three correct mutants that are capable of
producing 1 first; all those mutants will produce 0 with the probability 1

2 on the
input 1 in state b, returning back to state a. On the third input bit, which is 0,
there are three correct mutants still possible. Of these, the one having 1 on both
of the transitions from a on input 0 (call it M1) is now relatively as probable
as the other two together. Hence, the probability that 1 will be now outputted
in response to the input 0 is 3

4 . After two “rounds”, the Bayesian probability of
the mutant M1 is twice as high as that of the other two; hence the probability
of the output bit 1 is 2

3 + 1
3 · 1

2 = 5
6 . On the next round, M1 is four times as

probable as the remaining mutants, then eight times, and so on. This yields the
formula

Ck =
4

10 · 2k

∏
2≤i≤k

(
2i−2 + 1

2

2i−2 + 1

)
k > 1 (21)
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for the probabilities Ck. The analysis for Ak involves all the mutants and is
slightly more complex. We give only the resulting formula, which we have veri-
fied also by numerical computation. Denoting

α(n) =
1
4

∏
2≤i≤n

2i−2 + 1
2

2(2i−2 + 1)
, β(n) =

1
4

⎛
⎝ ∏

2≤i≤n

2i−2 + 1
2

2i−2 + 1

⎞
⎠

2

(22)

we have

Ak =
1
4

⎡
⎣3α(k) + α(1)β(k − 1) +

⎛
⎝ ∑

1≤i<k

α(i)β(k − i)

⎞
⎠
⎤
⎦ k > 1. (23)

If we now denote the product over i in (21) by K, we get

Ck =
4

10 · 2k
K, Ak =

1
4

[
3
4

1
2k−1 K +

1
16

K2
(

2k−2 + 1
2k−2 + 1

2

)2

+ R

]
(24)

where R ≥ 0. Hence we get

Ck

Ak
≤ 16

10
[

3
2 + 1

16

( 6
4

)k
(

2k−2+1
2k−2+ 1

2

)2
] k > 1 (25)

where we have applied the easily verifiable fact that for k > 1, K >
( 3

4

)k.
Now the denominator on the right grows without limits when k → ∞. Hence
limk→∞ Ck/Ak = 0, and

lim
k→∞

P(correct|ok, ik,T) = lim
k→∞

P(correct|T)Ck

Ak
=

5
256

lim
k→∞

Ck

Ak
= 0. (26)

Structural Explanation of the Phenomenon. This effect is caused ultimately by
the structure of T. The fifth mutant of T that produces always a sequence of
zeroes adds extra probability mass on the answer 0 for the input 0. The mutation
of the transition 〈b, 1, 0〉 �→

〈
b, 1

〉
to 〈b, 1, 0〉 �→

〈
b, 0

〉
alone creates an invalid

mutant: this mutant is capable of producing the trace
〈
1110, 0001

〉
, which is not

legal according to the specification T. However, combined with the mutation
from 〈a, 0, 0〉 �→

〈
b, 1

〉
to 〈a, 0, 0〉 �→

〈
b, 0

〉
, a valid mutant results. Therefore, the

set of valid mutants overemphasizes the answer 0 for the input 0, as mentioned.
Hence, observing 1 after the input 0 suggests an invalid implementation, even
though the response in itself is valid.

This explains why the trace
〈
0, 1

〉
yields a negative effect on the a posteriori

probability that the system under test is correct. The analysis of the infinite
sequence (20) is complicated by the need to take into account also the effect of
those mutants that take the self-loop transition at b with mutated output bit
(0), but the basic idea remains the same.

We can wrap up the previous discussion in the following theorem about our
bit transducers and our failure model, which is a description of the anomaly
itself in this context:
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Theorem 1 (Main Result). There exists a bit transducer B, and an infinite
sequence of inputs i1 ≺ i2 ≺ · · · (≺ is the strict prefix relation) and an infinite
sequence of outputs o1 ≺ o2 ≺ · · · , such that for all k, 〈ik, ok〉 is correct w.r.t.
B and P(correct|ok, ik, B) < P(correct|ok−1, ik−1, B) (the probability of a cor-
rect implementation decreases). Furthermore, the probability P(correct|ok, ik, B)
approaches zero in the limit k → ∞.

Proof. Let B be T and see Ex. 8, where such a sequence has been constructed.

3 Discussion

We defined a universe of system models (Def. 1), bit transducers, which are nonde-
terministic finite-state machines processing bits. We decided that – for the
purpose of black-box testing bit transducers – systems could be specified as bit
transducers also. Our conformance relation was based on a standard view of ob-
servational containment: a system conforms to its specification if and only if its
behavior (the set of producible traces) is a subset of the behavior of its specifica-
tion. (Note that all bit transducers are always ready to accept all inputs; hence,
there are no partial specifications and thus it is correct to use the subset relation.)

We then defined a fault model, which described the potential implementa-
tions for a given specification. Our fault model was probabilistic but attached a
uniform probability to all transition label mutations so that, in fact, all possible
implementations were equiprobable.

We then showed that there exists a simple bit transducer, which we named
T, such that testing a black-box implementation of T, there exists an infinite
sequence of longer and longer test runs such that (1) the test runs are correct with
respect to the conformance relation we defined, but (2) the probability-theoretic
risk of actually having an invalid implementation increases and approaches one
in the limit. (This was the essence of the concluding Theorem 1 – the particular
sequence was discussed in Ex. 8.)

The resulting anomaly is that running one more test run that yields “pass”
(only conforming behavior has been observed) actually increases the risk of hav-
ing a malfunctioning system. This means that from the viewpoint of the expected
utility theory [5], the utility of the system under test has decreased (if we attach
a negative utility on the case of having a malfunctioning system). Hence, a test
run ending with “pass” produced negative value. This is counterintuitive; yet,
the result is a mathematical fact, derived via universally accepted theories about
probability and rational decision [6, 5].

3.1 Underlying Assumptions

Let us now attempt to enumerate the underlying assumptions behind our result.
We assumed that conformance is a set-theoretic relation – an implementa-

tion is either conformant or not, but it cannot be “maybe-conforming” (which
would be a view towards fuzzy logic). Having a set-theoretic binary conformance
relation is common, and is e.g. the case in the ioco-theory [16].
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We assumed that every individiual observation is either correct (conforming)
or not. Again, this follows the thinking in the ioco-theory. This is also reflected
in practice: for example, the principal verdicts available in TTCN-3 are “pass”
and “fail” [2].

We assumed that implementations can be nondeterministic. We claim this is
reasonable, because real-world systems tend to be nondeterministic, although
the reasons vary: some systems make explicit calls to random number genera-
tion; some systems are nondeterministic because underlying services (e.g. op-
erating systems) are nondeterministic from the viewpoint of the system itself
(e.g. thread scheduling); and importantly, many systems are nondeterminis-
tic from testing point of view due to environmental factors that are not ac-
counted for in testing (e.g. points of control and observation not visible to a test
harness).

We assumed that it is possible to attach probabilities on nondeterministic
branches. We believe this makes sense, because by the law of large numbers,
unrelated phenomena eventually become stochastically modelable.

We assumed that there exists a probability distribution of multiple potential
implementations of a system specification, and that the specification affects the
structure of the distribution. The fact that there exists a probability distribu-
tion is probably uncontestable (what is true is that the distribution is usually
unknown to us because the development of a particular system is not an exper-
iment repeated many times – but this has not precluded the use of hypothetical
fault models as analytical devices).

We claim that the resulting anomaly is mostly a direct consequence of these
assumptions. Next, we describe why we believe this is the case.

3.2 Arguments for and Against

We believe that this anomaly is ultimately caused by the commonly agreed
view that observed behavior is either acceptable or not. This causes loss of
information. An acceptable behavior is a behavior that could have been produced
by at least one potential implementation that has a non-zero probability and that
is correct with respect to the system specification. Thus, there is no distinction
between behaviors that have different likelihoods of being produced by correct
systems; in common thought, all behaviors with non-zero such a likelihood are
collected into the same opaque class of conforming behaviors.

If the “pass” verdict is seen as meaning “there is yet a non-zero probability of
having a correct system”, and nothing else, there is in fact no anomaly. However,
people tend to reason like this: “if I test more, there is a higher probability of
finding a defect; hence, if no defect is found, I can trust the system more because
I have tested it more”. Our results show that the last part of this sentence is not
mathematically true – only the first part is.

An observation can increase – from the viewpoint of Bayesian deduction –
the probability that the system under test is in fact one of the faulty imple-
mentations; yet the observation cannot necessarily be used to prove that beyond
doubt. In all fault models where this is true, the presented anomaly can exist.
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One of the main contributions of this note is that we have constructed a
realistic system model and a realistic fault model within which this anomaly has
been described and reported in detail.

We can also imagine arguments against this note. Let us attempt to counter
some of these hypothetical objections.

“It is not an anomaly, because it is based on a calculation that yields no
contradiction.” Certainly, the calculation itself is not contradictory, in the same
sense as mathematics are not self-contradictory. The anomaly lies in that the
theory of test observations and verdicts is not completely aligned with the theory
of rational decision. Yet, rational decision theory is closely linked with the notions
of risk and confidence, and risk and confidence is what testing is all about.

“There is no anomaly, because the probability of producing the presented se-
quence of inputs and outputs approaches zero when the length of the sequence
increases.” It is true that the elements of the sequence (20) become less and less
probable when executed against any of the valid mutants. However, every ele-
ment has a positive probability, and in practice testing must stop after a certain
number of steps. At this point, there has been a positive probability of produc-
ing a prefix of the sequence. The quantitative value of that probability is not
important, because it depends on the chosen system and fault models.

”The anomaly is caused by having a non-probabilistic specification and a prob-
abilistic implementation.” This claim could have truth in it – more research is
needed to find out if the same result can be produced with strictly determinis-
tic systems. However, what is very important is that the ioco testing theory is
about non-probabilistic specifications; yet it can be used to test nondeterministic
(i.e. probabilistic) black boxes. Hence, this kind of an argument would not be
targeted towards this note alone, but a large body of current testing theory. (Of
course, it could be worthfile to present that argument anyway.)

3.3 Avoiding the Anomaly

In this section we present some conceivable ways to remedy this anomaly.

Probabilistic conformance. One way to avoid the anomaly would be to dis-
pense with the idea of a binary set-theoretic conformance relation, and to replace
it with a probabilistic one. In practice this would mean also dispensing with the
traditional verdict “pass”. The verdict “fail” could remain, because it corre-
sponds to the impossibility of having a correct implementation (a defect has
been surely detected).

Controlled fault models. Another option would be to consider not all fault
models but only those fault models where the anomaly does not surface. For
example, we conjecture that this anomaly is not present in general in fault models
where there is no relationship between specifications and implementations, but
the distribution of possible implementations is the same for all specifications.
We leave this as a subject for further study.

Stochastic view on the whole testing process. The anomaly presented here
is that a certain test sequence yields negative contribution to confidence in the
correctness of the system under test, yet the sequence in itself is correct according
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to the specification. However, it is plausible that in the example we presented,
the expected effect on the confidence over all different test input sequences could
be actually uniformly positive. Taking this view, one could argument that the
anomaly is not important because it disappears “in the long run”. We leave this
also as a subject for further study.

3.4 Pragmatic Consequences

One last thing to discuss is whether the presented result can contribute in any
way to the practice of black-box testing – especially with formal methods.

It is quite clear that the calculations in this paper are practically impossible to
be carried out on a system of any realistic size. Hence, we can reasonably assume
that the current practices (pass & fail, set-theoretic conformance relations) will
continue their happy life. In the context of this assumption, the following insights
can be seen as practical consequences of our result.

Specifications that allow for multiple correct behaviors cause problems. Our
analysis confirms the understanding that a system under test should be as little
nondeterministic as possible: more control over the environment of an SUT and
more strict specifications result in more efficient testing.

There can be really bad testing strategies. The testing strategy constructed in
this paper yields in the limit probability 0 for the correctness of a black box that
is still actually correct! What this tells most about is perhaps the constructed
strategy itself. It is a testing strategy that destroyes value (in terms of increasing
risk) with a positive probability. The pragmatic implication is that the quality
of testing strategies can wary wildly, and that a way to assess their quality in
quantitative terms can prove out to be a powerful test generation heuristic.

4 Conclusions and Future Work

In this note, we described an anomaly in the relationship between the mathemat-
ical definition of confidence and the common thinking about black-box testing:
it is possible to execute tests that get the label “pass”, yet the confidence in the
system under test decreases. We claimed that this is a general phenomenon and
provided analysis of the result from multiple perspectives.

Many questions have been left open by this note. We suggest these as topics
for future research: Is it possible to find an example of the phenomenon in the
context of transfer (as opposed to output) faults? Does this anomaly exist in the
context of strictly deterministic implementations? Can the anomaly be shown
to exist only in fault models where implementation probabilities depend on the
specification? Does the anomaly disappear if only the expected increase of confi-
dence over all uniformly distributed test input and the related output sequences
is considered? Can a deeper analysis of the phenomenon lead to advances in test
design heuristics?

Acknowledgements are due to the anonymous referees for both FATES ’03
and FATES ’05.
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Abstract. We propose a novel, practical coverage metric called “loca-
tion pairs” (LP) for concurrently-accessed software components. The LP
metric captures well common concurrency errors that lead to atomicity
or refinement violations. We describe a software tool for measuring LP
coverage and outline an inexpensive application of predicate abstraction
and model checking for ruling out infeasible coverage targets.

1 Introduction

Verification and testing of concurrently-accessed software components is par-
ticularly challenging because the interleaving of concurrently executed threads
compounds the program state space. Validation methods must both store infor-
mation and have control of thread scheduling. As a result, exhaustive testing or
model checking are prohibitively costly for realistic configurations of industrial-
scale concurrent programs. This motivates the study of methods that combine
verification and testing approaches in order to strike a compromise between
computational cost and exhaustiveness.

We are exploring several hybrid techniques in which coverage metrics serve as
the link between model checking and testing tools and enable us to (i) quantify
the adequacy testing/verification performed, (ii) communicate partial results
and testing/verification goals between tools, (iii) direct testing effort towards
unexplored, quantitatively distinct executions of a program that are interesting
for a particular purpose.

In this paper, we propose a coverage metric, called “location pairs” (LP) fo-
cused on the concurrency aspects of test executions. The LP metric was inspired
by a pattern common to atomicity and refinement violations that were found
in industrial software examples and in the literature [2, 3, 5]. These concurrency
errors are triggered whenever an instance of the following scenario takes place: A
thread t1 executes a particular line of code ln1, then a context-switch occurs and
another thread t2 starts execution at another line of code ln2. This sequence of
events, and the existence of a dependency between t1’s execution of the block of
code preceding ln1 and t2’s execution of the block of code following ln2 guaran-
tee that the error will occur regardless of the program state and other concurrent
threads. This scenario is different from a race condition: t1 and t2 may protect
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all global variables they access using the proper locks, but the interleaving de-
scribed may still cause an atomicity or refinement violation. The LP metric is
associated with higher-level concurrency errors similar to those in [1, 2, 5].

The fact that the LP metric seems to correspond well with certain types of
concurrency errors makes it a promising tool for guiding manual validation effort
and catching errors beyond the reach of methods based on state-space traversal.
A particular concurrency error may not be possible with small program states or
few threads because certain conflicts or resource contention are required to trig-
ger it. It may also be unlikely because it requires the external events to be timed
and threads interleaved a certain way. The LP metric captures errors caused
by such unforeseen interleavings. The oversight typically occurs because of erro-
neous assumptions about the environment or the belief that a synchronization
mechanism makes a certain interleaving impossible. Given an unexamined but
apparently reachable location pair as a target, the programmer can reason about
conditions that need to be set up to reach the target or provide the coverage
analysis tool hints that help it prove that the target location pair is unreachable.
In this way, the LP metric helps test writers explore qualitatively distinct and
error-prone scenarios. Further, if they believe a certain scenario is not possible,
it provides a tool for them to make explicit and check the justification for their
belief.

The use of the LP metric also makes possible practical automatic techniques to
be provided for the tasks of measuring coverage, ruling out infeasible coverage
targets, and providing abstract traces to help with test input generation. We
are developing a software tool that measures test coverage according to the
LP metric for Java programs. We also propose the lightweight use of formal
verification tools (a combination of predicate abstraction and model checking) to
rule out an efficiently-computable set of unreachable location pairs. By avoiding
exhaustive exploration of possible program states and thread interleavings and
precise determination of reachable location pairs, we keep the computational
burden of our method low. Since the metric involves consideration of pairs of
method bodies, it does not lead to a combinatorial blow-up in the number of
coverage targets.

Section 2 presents preliminaries required to state our coverage metric pre-
cisely. A motivating example from Java class libraries is provided in Section 3.
Section 4 describes the LP coverage metric. Section 5 outlines the method used to
compute a reduced set of coverage targets. Section 6 describes how the proposed
metric successfully captures the concurrency errors in the examples studied.
Section 7 outlines our future research.

2 Preliminaries

2.1 Concurrent Programs: Syntax

In this paper, we focus on realizations of concurrently accessible data structures
written in object-oriented languages. For ease of exposition, we use a simple
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P ::= defn∗ e (program)
defn ::= class cn body (class declaration)
body ::= extends c { field∗ method∗ } (class body)
field ::= t fn = e (field declaration)

method ::= t mn(arg∗) {e} (method declaration)
arg ::= t x (variable declaration)
s,t ::= c | int | boolean | ... (type)
c ::= cn | Object (class type)
e ::= new c (allocate∗)

| x (variable∗)
| e.fd (field access∗)
| e.fd:=e (field assignment∗)
| e == e | e < e (comparison expression∗)
| e ∨ e | e ∧ e | ¬ e (boolean expression∗)
| e.mn(e∗) (method call)
| synchronized e in e (synchronization)
| fork e (fork)
| if(Bexp?s : s) (if statement)
| while(Bexp, s) (while statement)
| pure(s) (purity annotation)
| atomic(s) (atomicity annotation)

cn ∈ ClassNames
fn ∈ FieldNames

mn ∈ MethodNames
x,y ∈ VariableNames

Fig. 1. The grammar for CJ

language that we call CJ. The syntax of CJ is given in Fig. 1. A data structure
D is an instantiation of a CJ class C. The set of C’s methods are denoted by MC .

atomic(s) marks s as an atomic statement block: a sequence of actions, which
can be shown to be atomic by using commutativity and reduction arguments.
pure(s) marks s as a pure statement block as defined in [4]. Roughly speaking,
a pure block does not modify the program state unless it terminates exception-
ally. The concepts of purity and atomicity are used in defining the LP metric in
order to reduce the number of qualitatively distinct scenarios that need to be
explored.

2.2 Concurrent Programs: Semantics

The semantics of a data structure written as a CJ class is given by a state
transition graph. Each state of the program is a unique assignment of values
to program variables. Global variables VG are variables in the representation of
D that are accessible by all methods of C. Each multi-threaded execution also
uniquely defines a set of local variables VL which are variables accessible by
an individual thread only. Local variables correspond to method-local variables
in CJ.
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Each state transition corresponds to an atomic update of a program variable,
called an action. For ease of exposition, we assume that the types of expressions
shown with an asterisk (∗) in Fig. 1 are executed atomically as well as method
invocations, returns, lock acquisitions and releases.

Control Flow Graphs: With each method μ ∈ M we associate a control flow
graph CFGμ obtained from the CJ code for the method. A control flow graph
CFGμ = 〈V, E, λv, λe〉 is a directed graph. Vertices of a CFG are partitioned into
two: V = Vctrl ∪ Vexec, where Vctrl is the set of branching vertices corresponding
to “if” and “while” statements, and Vexec is the set of execution vertices. Each
branching vertex v ∈ Vctrl is labeled with a single atomically-evaluated expres-
sion λv(v). The two outgoing edges representing the two branches are labeled
by the corresponding boolean value of λv(v). Each execution vertex v ∈ Vexec is
labeled by a sequence of actions λe(v).

A location in the CFGμ is like a program counter – it indicates at what point
of the code the execution is. More precisely, a CFGμ has associated with it a
set of locations Lμ where each l ∈ Lμ is identified by either a pair of actions
(αi, αi+1) where αi and αi+1 are two consecutive actions in the label of a vertex
in the CFG, or represents the entry point of a vertex in the CFG and corresponds
to the case where execution of actions labeling that vertex has not started yet.
The action immediately following a location l is denoted by α(l).

3 Motivating Example: java.lang.StringBuffer

The control flow graph for the append method of an older version of
StringBuffer is given in Fig. 2. This version of the append implementation
has a concurrency error due to the fact that the method argument, sb, is not
locked throughout the method [5].

L2
int len = sb.length();

int newcount = count + len;

acquire(this)

expandCapacity(newCount);

2     int newcount = count + len;
3     if (newcount > value.length)

7     return this;
8   }

6     count = newcount;

4         expandCapacity(newCount);

1     int len = sb.length();

    public synchronized StringBuffer
           append(StringBuffer sb) {

5     sb.getChars(0, len, value, count);

count = newcount;

return this;

invoke sb.getChars()

sb.getChars(0, len, value, count);

 (newcount > value.length)

false

true

L1
invoke sb.length();

Fig. 2. The CFG for StringBuffer.append()
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During an execution of append by a thread t1, the state of sb can be modi-
fied by another thread t2 between the invocation of the (synchronized) method
sb.length() in line 1 of the append method and the invocation of
sb.getChars() in line 5. For example, if sb’s length is more than 0 and t2
executes sb.setLength(0) between these two invocations, an atomicity viola-
tion occurs. setLength(0) invokes the following line

count = newLength;

where the value of newLength is 0. Let “L3 -> L4” denote this action in
setLength(). Since this action occurs before sb’s contents are appended to
this, in fact, an exception is thrown during getChars.

Observe that this error occurs whenever line 1 of append is followed by the
line count = newLength; in sb.setLength. We found that this pattern of two
particular consecutive dependent actions from two method bodies explains all
atomicity and refinement violations we encountered. The LP metric makes pre-
cise and captures this intuition in the form of a coverage metric. Since the metric
requires pairwise consideration of method bodies, it does not lead to a combina-
torial blow-up in the number of coverage targets.

4 The “Location Pairs” Coverage Metric

We formulate our coverage metric as a requirement that certain states and cer-
tain transitions of a set of coverage finite-state machines (FSM) be traversed
during test executions of the program. A coverage FSM F1,2 is defined for each
pair of methods (μ1, μ2). A fragment of the coverage FSM for with μ1 chosen to
be StringBuffer.append() and μ2 = setLength() is given in Fig. 3. The L3
-> L4 transition represents the line count = newLength in setLength(). The
states and transitions of the coverage FSM F1,2 are described below.

A state s of F1,2 is a tuple s = 〈l1, pend1, l2, pend2, depdt〉 where

– l1 and l2 are locations in the CFG’s of μ1 and μ2, respectively,
– depdt is a boolean variable indicating whether the pair of actions α(l1) and

α(l2) immediately following locations l1 and l2 are dependent as defined

(L1,!pend1,L3,!pend2,depdt)

(L2,!pend1,L3,pend2,!depdt)

(L2,!pend1,L4,!pend2,!depdt)

(L1,pend1,L4,!pend2,!depdt)

t2: L3 −> L4t1: 
L1 −

> L2

t1: 
L1 −

> L2t2: L3 −> L4

Fig. 3. A fragment of the coverage state machine for a concurrent execution of
StringBuffer.append() and StringBuffer.setLength()
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in [9], i.e., at least one of them modifies a variable that the other one reads
or writes a different value to, and

– pend1 (respectively, pend2) is a boolean variable that has the value true iff
the current coverage state was reached by taking an action in μ1 (respec-
tively, μ2) from a previous coverage state where depdt was true.

There is a transition in the coverage FSM whenever one location can be
followed by another. This will be reduced later to approximate what can happen.
There is a transition in the coverage FSM from state p to state q

p = 〈l1p, pend1
p, l

2
p, pend

2
p, depdtp〉 −→ q = 〈l1q , pend1

q, l
2
q , pend

2
q, depdtq〉

iff depdtq is a legal value for whether actions α(l1q) and α(l2q) are dependent, and
one of the followings holds:

(i) the execution of method μ1 can move from l1p to l1q , and l2p = l2q , or
(ii) the execution of method μ2 can move from l2p to l2q , and l1p = l1q .

The pend1 and pend2 bits are updated as follows:

– If depdtp is false then both pend1
q and pend2

q are assigned to false.
– If depdtp is true and case (i) above was applied, then pend2

q is assigned to
true and pend1

p is assigned to false.
– If depdtp is true and case (ii) above was applied, then pend1

q is assigned to
true and pend2

p is assigned to false.

Our coverage metric requires that all reachable transitions of the coverage
FSM of the following two forms be traversed:

p = 〈l1p, true, l2, pend2
p, depdtp〉

α(l1)−→ q = 〈l1q , pend1
q, l

2, pend2
q, depdtq〉

p = 〈l1, pend1
p, l

2
p, true, depdtp〉

α(l2)−→ q = 〈l1, pend1
q, l

2
q , pend

2
q, depdtq〉

During an execution of a multi-threaded program, several different pairs of
threads can be in the process of executing μ1 and μ2 concurrently. Each such pair
of threads is at a particular, possibly different state of the coverage FSM F1,2.

The following reductions are used to obtain a more compact CFG and fewer
locations from a method without eliminating any interesting interleavings:

- We lump together a basic block (i.e. uninterrupted by branching statements)
of method-local actions – actions that do not modify any global variables,
and consider it as a single action. Any method-local action is independent
from any other action by another thread, therefore, its interleavings do not
produce qualitatively distinct scenarios.

- A statement block s marked as “pure” (pure(s)) is partitioned into a control
flow graph of atomic actions as described above. A pure execution of such
a block is interpreted as no action having been taken at all, since a pure
execution does not modify any global variables (see [4]). This results in
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an important reduction in the number of target interleavings, since pure
executions typically perform only lock acquisitions and releases and without
this optimization, they can lead to a large number of possible, equivalent
interleavings.

- During coverage analysis, we model atomic executions of lock-protected
blocks marked atomic(αs; . . . ; αt) as a pair of consecutive actions (α[[, α]]).
α[[ is an aggregate action that acquires all the locks in the beginning of the
atomic block and α]] releases the locks acquired previously as well as achiev-
ing the composed effect of αs, . . . , αt. This is done in order to incorporate
into the model a possible violation of the claimed atomicity: If a thread gets
interleaved in between the pair of actions and modifies a global variable that
was supposed to have been protected by the locks of the atomic block, an
error is signaled.

Even though applying the reductions above yields a smaller, more usable cover-
age FSM, an exact determination of the reachable set of states and transitions
of F1,2 remains undecidable. To have a practical method, we instead employ
an inexpensive technique that uses predicate abstraction and model checking to
rule out a subset of unreachable states and the transitions of F1,2. Due to space
limitations, a detailed description is deferred to the Appendix.

5 Measuring Coverage

While we make conservative simplifying assumptions while reducing the cover-
age FSM, during actual coverage measurement, no such approximation is needed.
Whether a pair of actions executed one after the other are dependent can be eas-
ily and exactly determined at run-time by examining the types and parameters
of the actions by the coverage tool.

If at any point in the execution of a multi-threaded program, some thread
t1 starts executing μ1 while another thread t2 is executing μ2 (or t2 starts
executing μ2 while t1 is executing μ1), the coverage tool creates a new instance
F (1,2)

i of the class representing the coverage FSM F1,2 and starts it at a state
corresponding to the pair of locations that t1 and t2 are in. From then on F (1,2)

i

takes transitions triggered by the actions of t1 and t2 as described in Section 4
until either t1 exits that particular execution of μ1 or t2 exits μ2, whichever
comes earlier. The coverage tool keeps an instance F (1,2)

rec of the coverage FSM
F1,2 for record keeping. All edges of F1,2 visited by any instance of F1,2 created
during execution are recorded in F (1,2)

rec . Note that different edges of F1,2 may
be covered by different pairs of threads.

The feedback provided to the programmer after running a test suite is a list
of unexamined pairs of locations that the analysis described above has not been
able to rule out as a possibility. At this point, the programmer can either identify
this as a true coverage gap and write test programs aimed at exercising those
scenarios, or, if he believes this is an unreachable pair of locations, he can provide
his reasoning in the form of additional predicates to the coverage feasibility
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1 public synchronized void addElement(Object obj) {
2 modCount++;
3 ensureCapacityHelper(elementCount + 1);
4 elementData[elementCount] = obj;
5 elementCount++;
6 }

1 public int lastIndexOf(Object elem) {
2 int count = Read(elementCount) - 1;
3 return lastIndexOf(elem, count);
4 }

Fig. 4. Code fragments illustrating the error in java.util.Vector

analysis in order to rule out the fictitious coverage gap (see the Appendix). Note
that the programmer has to provide his reasoning rather than simply turning
off the warning from the coverage tool.

6 Empirical Evidence for the Metric

This section describes how the LP coverage metric captures concurrency errors
from the literature and errors in industrial examples we studied. Each error
scenario as described is easily expressed as one of the required edges for the
coverage FSM for the pair of methods referred to for each example.

java.util.StringBuffer:This example, the concurrency error associated with
it and how the location pairs metric captures it were discussed in Section 3.

java.util.Vector:The code for this example is modified to contain one atomic
action per line for illustration purposes (see Fig. 4). If line 3 in lastIndexOf is
followed by line 5 in line 4 in addElement, this leads to an atomicity violation,
which was previously discovered by [6]. In particular, if elem == obj, this would
have led to an incorrect return value for lastIndexOf, which is a refinement
violation [2].

Cache Module of Boxwood: The error, explained in more detail in [2], in-
volves a cache block in a data structure to be flushed to the next level of the
storage hierarchy while it is being overwritten by another thread. This corre-
sponds to line 3 in the CpToCache method in Fig. 5 being executed right after
line 3 in the Flush method, representing flush midway through the copying of
buffer buf to the cache.

The “Scan” File System: The error in this system, as documented in [10],
is very similar in spirit to the scenario in the Boxwood cache. While the file

1 private static void CpToCache(byte[] buf,
CacheEntry te, int lsn, Handle h) {

2 for(int i = 0; i < buf.Length; i++) {
3 te.data[i] = buf[i];
4 }
5 te.lsn = lsn;
6 }

1 public static void Flush(int lsn) {
...
2 lock(clean) {
3 BoxMain.alloc.Write(h, te.data, te.data.Length,

0, 0, WRITE_TYPE.RAW);
4 }
...

Fig. 5. Buggy code fragment from an earlier version of the Boxwood Cache module
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system cache is being written to the disk, after a block gets copied to disk and
gets marked “clean”, it gets overwritten by another file system thread.

The Concurrency Error Categories in [3]: The LP metric can express as
a coverage goal all error-prone scenarios that are described in this work. The
errors in the category “Code Assumed to Be Protected” of [3] are particularly
relevant for atomicity and refinement violations.

7 Ongoing Work

We are implementing a software tool written in Java that measures LP metric
coverage attained during testing. We instrument the byte-code of the program
under test by inserting notification calls from the tested program to the coverage
tool after each code block interpreted as an atomic action as described above.
To minimize impact of online coverage analysis on the concurrency behavior of
the original program, in a later version of the tool, we intend to instrument the
program being tested in order to generate per-thread logs of actions relevant to
the coverage metric. The coverage tool will then take only the logs as its input
and will not affect the execution of the program being tested.

We also intend to study bug databases of other large multi-threaded designs,
such as web servers, and determine to what extent the proposed metric cap-
tures the bugs documented. Future research includes an implementation of the
coverage FSM reduction technique described in the Appendix.
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Abstract. Adaptive Random Testing (ART) denotes a family of test
case generation algorithms that are designed to detect common failure
patterns better than pure Random Testing. The best known ART algo-
rithms, however, use many distance computations. Therefore, these algo-
rithms are quite inefficient regarding runtime. New algorithms combining
Adaptive Random Testing by Bisection and the principle of localization
are presented. These algorithms heavily reduce the amount of distance
computation while exhibiting very good performance measured in terms
of the number of test cases necessary to detect the first failure.

1 Introduction

Software testing is the process of executing a program with the intention to
uncover bugs [1]—an old and still important definition. It is usually quite time
consuming to produce a significant number of test cases. Therefore, Random
Testing [2, 3, 4, 5, 6], i. e. the random generation of test cases, has gained much
importance. Another black box strategy, namely partition testing [7], i. e. the
division of the input domain into partitions and the generation of test cases
from each partition, has also attracted much attention. There have been several
investigations comparing Random Testing and partition testing [7, 8, 9, 10, 11].
An advantage of Random Testing over partition testing is that it is able to
deliver reliability predictions [4, 12, 13]. However, the fact that Random Test-
ing does not use information about the program under test has been criticized
[1] and led to criteria on when partition testing performs better than Random
Testing [7, 9]. Adaptive Random Testing (ART) [10] has been designed to detect
common failure patterns better than pure Random Testing. This aim is achieved
through wide spread test cases. The best ART algorithms (D-ART [10] and RRT
[14, 15, 16]), however, require a huge amount of distance computations. Recently,
ART algorithms inspired by partition testing have be published [17]. These al-
gorithms do not require distance computations. Their performance measures in
terms of the number of test cases necessary to detect the first failure are better
than that of pure Random Testing, but not nearly as good as the best ART
algorithms. The present contribution presents two algorithms which combine D-
ART resp. RRT with dynamic partitioning using the principle of localization.
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Whereas in [18] this was done for ART by random partitioning, the present
contribution combines D-ART resp. RRT with ART by bisection.

The following section presents preliminaries regarding failure patterns, no-
tation, and common ART methods. The proposed algorithms are detailed in
Section 3. An empirical evaluation of the proposed algorithms is described and
discussed in Section 4, followed by a conclusion.

2 Preliminaries

2.1 Notation

The input domain is assumed to be bounded. The failure rate, i. e. the percentage
of failure-causing inputs, is denoted θ. For a finite input domain of size d with
m failure-causing inputs, θ = m/d.

The F-measure is the number of test cases necessary to detect the first failure.
This is a very natural measure for the performance of a testing strategy, since
often testing is stopped when the first failure is detected. The F-measure has been
used in all publications on ART. It is therefore ideal for comparison purposes.

For Random Testing with uniform input profile and replacement, the theoret-
ical mean F-measure is equal to 1/θ.1 For example, for a failure rate of θ = 0.01,
the theoretical mean F-measure of random testing with replacement is 100.

2.2 Failure Patterns

Chan et al. [8] observed and described three typical patterns of failure-causing in-
puts within the input domain of real programs they examined (cf. Figure 1). The

(a) (b) (c)

Fig. 1. Block, strip, and point patterns within a two-dimensional input domain

block pattern (cf. Figure 1a) describes the situation where the failure-causing
inputs are located next to each other within a small region of the input domain.
The strip pattern (cf. Figure 1b) is achieved if the failure-causing inputs form
a narrow strip within the input domain. Finally, the situation when there are
1 Let FRT denote the theoretical mean F-measure of Random Testing with replacement

for a given failure rate θ. This notation is used in the tables with the simulation
results.
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many wide spread failure-causing inputs or small clusters of such inputs is de-
scribed by the point pattern (cf. Figure 1c). According to Chan et al. [8], the
block and the strip failure pattern are the most common. These patterns support
the intuition of ART that wide spread test cases have a higher probability of
earlier detecting failures.

2.3 Some ART Algorithms

The first ART algorithm was distance-based ART (D-ART) [10, 19] with fixed
sized candidate set. This method chooses the first test case purely randomly.
Thereafter, a set of test case candidates—each chosen purely randomly—of size
k is computed in each iteration. The test case from the candidate set with the
greatest minimal distance to the already executed test cases is chosen as the
next test case. In the following iteration, a new candidate set is chosen and the
procedure is repeated until a failure is detected (or the resources for testing are
exhausted). The size k = 10 of the candidate set has been recommended.

Another ART algorithm is based on restriction, namely Restricted Random
Testing (RRT) [14, 15, 16]. The first test case is again chosen purely random. In
each iteration a disc with exclusion radius r :=

√
A · R/(π · n) is located around

each previously executed test case that did not exhibit a failure. A denotes the
area of the input domain, R denotes the coverage ratio (of the exclusion zone
relative to the area of the input domain), and n is the number of previously
executed test cases not causing a failure. Each randomly generated test case
that falls within one of these discs is rejected. The first test candidate that
does not fall within the exclusion zone is chosen as the next test case and the
procedure is repeated. A coverage ratio R = 1.5 is given as a recommendation.

D-ART and RRT require many distance computations. Therefore, ART by
bisection has been presented in [17] along with ART by random partitioning.
These methods have the advantage that they do not need distance computa-
tions. ART by bisection chooses the first test case purely randomly. Thereafter,
the input domain is bisected. One of the two resulting partitions contains the
already executed test case and the other does not. The “empty” partitions that
do not contain a previously executed test case are selected in a random order
and a test case is generated purely randomly within each such region. As soon
as all partitions contain previously executed test cases, all partitions are bi-
sected along the larger side. The generation of test cases within the “empty”
partitions and the bisection of all partitions is repeated in each iteration. Some
steps of the execution of this algorithm are illustrated in Figure 2. The “non-
empty” partitions are shown hatched. Figure 2a shows the first iteration where
one test case has been selected randomly. After the bisection at the end of the
first iteration there remains only one “empty” partition for the second iteration.
Figure 2b shows the generation of a test case within this region. After further
bisection at the end of the second iteration, Test 3 is chosen within an “empty”
region in iteration three (cf. Figure 2c). Finally, Figure 2d shows one step of
the fourth iteration. The partitions have again been bisected after the third
iteration.
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Fig. 2. Adaptive Random Testing by Bisection: Some steps of the algorithm

3 The ART by Bisection and Localization Algorithms

Whereas D-ART and RRT extensively use distance computations, ART by bi-
section does not need any distance computation. However, ART by bisection
performs significantly worse than D-ART and RRT in terms of the F-measure.
The combination of ART by random partitioning and D-ART resp. RRT in [18]
is based on the principle of localization. This means that only “nearby” previ-
ously executed test cases are used for the distance computations to reduce the
effort of D-ART and RRT. The novel ART algorithms are also based on the
principle of localization and combine ART by bisection with D-ART resp. RRT.
The selection of the next test case is done using D-ART resp. RRT, where the
distance computation is only performed with “neighboring” previously executed
test cases.

It is assumed that the two-dimensional input domain is rectangular with lower
left corner (xmin, ymin) and upper right corner (xmax, ymax). Therefore, the inputs
are two-dimensional vectors (x, y) of real values with xmin ≤ x ≤ xmax and
ymin ≤ y ≤ ymax. It can trivially be adapted to a bounded region of integers or
higher dimensional input domains.

The coverage ratio R for the first algorithm must be within [0, 0.7].
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Algorithm 1: Adaptive Random Testing by Bisection and Localization
with RRT

1. Initialize the list of untested regions Luntested :={{(xmin, ymin)(xmax, ymax)}},
the list of tested regions Ltested with the empty list, and the target exclusion
area Aexcl := R · (xmax − xmin) · (ymax − ymin).

2. While Luntested is not empty:

(a) Set the exclusion radius r :=
√

Aexcl/(π · #(Ltested)).2

(b) Randomly select a test region T = {(x0, y0)(x1, y1)} from Luntested and
do not remove it.

(c) Randomly select a point (x, y) from within the test region T .
(d) For each neighbor T ′ of T with (T ′, (x′, y′)) in Ltested:

If dist((x, y), (x′, y′)) ≤ r then reject (x, y) and go back to step 2.
(e) If the point (x, y) is a failure-causing input, report failure and terminate.
(f) Otherwise append (T, (x, y)) to Ltested and remove T from Luntested.

3. Initialize Ltemp with the empty list.
4. For each element ({(x0, y0)(x1, y1)}, (x, y)) from Ltested:

(a) Let T := {(x0, y0)(x1, y1)}. Furthermore, let w := x1 − x0 be the width
of T and h := y1 − y0 be the height of T .

(b) If w ≥ h, divide T into the two regions T1 := {(x0, y0)(x0+w/2, y1)} and
T2 := {(x0 + w/2, y0)(x1, y1)}. Otherwise divide T into the two regions
T1 := {(x0, y0)(x1, y0 + h/2)} and T2 := {(x0, y0 + h/2)(x1, y1)}.

(c) If (x, y) ∈ T2, exchange T1 and T2.
(d) Add (T1, (x, y)) to Ltemp and T2 to Luntested.

5. Copy Ltemp into Ltested and proceed with step 2.

Within each step, an “empty” region is chosen and a test case candidate is ran-
domly selected within this region. If the candidate is rejected (i. e. the distance
to one of its neighboring3 regions is not greater than the exclusion radius r),
the process of choosing an “empty” region and selecting a test case candidate
is repeated. Otherwise, the candidate is executed as the next test case and the
region is marked “non-empty”. Figure 3 illustrates a possible situation within
the execution of the algorithm. Thereafter the algorithm proceeds as illustrated
in Figure 4. It first selects the lower left “empty” region and a test case candi-
date within it (cf. Figure 4a). Since the candidate is within the exclusion area
determined by the discs around the neighboring previously executed test case, it
is rejected. Thereafter, the upper left “empty” region is chosen and a test case
candidate is selected which is not rejected (cf. Figure 4b), since it is not within
the discs.

The following algorithm has the size k of the candidate set as its parameter.

2 #(Ltested) denotes the size of the list Ltested.
3 A region has at most four neighboring regions: The left, right, upper, and lower

neighbor.
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Fig. 3. Adaptive Random Testing by Bisection and Localization: The previously exe-
cuted test cases, “empty” and “non-empty” regions
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Fig. 4. Adaptive Random Testing by Bisection and Localization with RRT

Algorithm 2: Adaptive Random Testing by Bisection and Localization
with D-ART

1. Initialize the list of untested regions Luntested :={{(xmin, ymin)(xmax, ymax)}}
and the list of tested regions Ltested with the empty list.

2. While Luntested is not empty:
(a) Initialize the candidate set C with the empty set.
(b) Repeat k times:

i. Randomly select a test region T = {(x0, y0)(x1, y1)} from Luntested
and do not remove it.

ii. Randomly select a point (x, y) from within the test region T .
iii. Initialize the neigbor set N with the empty set.
iv. For each neighbor T ′ of T with (T ′, (x′, y′)) in Ltested:

Add (x′, y′) to N .
v. Let d be the minimal distance between (x, y) and the set of neighbors

N .
vi. Add ((x, y), T, d) to C.

(c) Select the element ((x, y), T, d) from C with maximal distance d.
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(d) If the point (x, y) is a failure-causing input, report failure and terminate.
(e) Otherwise append (T, (x, y)) to Ltested and remove T from Luntested.

3. Initialize Ltemp with the empty list.
4. For each element ({(x0, y0)(x1, y1)}, (x, y)) from Ltested:

(a) Let T := {(x0, y0)(x1, y1)}. Furthermore, let w := x1 − x0 be the width
of T and h := y1 − y0 be the height of T .

(b) If w ≥ h, divide T into the two regions T1 := {(x0, y0)(x0+w/2, y1)} and
T2 := {(x0 + w/2, y0)(x1, y1)}. Otherwise divide T into the two regions
T1 := {(x0, y0)(x1, y0 + h/2)} and T2 := {(x0, y0 + h/2)(x1, y1)}.

(c) If (x, y) ∈ T2, exchange T1 and T2.
(d) Add (T1, (x, y)) to Ltemp and T2 to Luntested.

5. Copy Ltemp into Ltested and proceed with step 2.

In each step, k times an “empty” region is chosen and a test case candidate is
selected. For each test case candidate the minimal distance to its neighboring
previously executed test cases is computed. The candidate which maximizes this
distance is then chosen as the next test case and the process is repeated. For the
previous situation as in Figure 3, the situation after the selection of all test case
candidates is illustrated in Figure 5. The distance computations are illustrated

Test 5
Test 2

Test 1

Test 3

Test 4

Cand.

Test 6Cand.

Cand.

Cand.

Fig. 5. Adaptive Random Testing by Bisection and Localization with D-ART

through dashed lines. Since the candidate in the upper left region maximizes the
minimal distance to its neighboring previously executed test cases, it is chosen
as the next test case.

Since there are at most four neighbors, the total number of distance compu-
tations is

F∑
i=1

4k = 4kF

for a run of the D-ART variant with F-measure F . This can also be assumed
the total number of distance computations for the RRT variant if k is seen as
the mean number of necessary test case candidates in each iteration. Thus, for
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ART by bisection and localization, the total number of distance computation is
linear in the F-measure, whereas it is quadratic for D-ART and RRT.4

4 Simulation Study

To compare the novel algorithms with other ART methods, a simulation study
has been performed and the F-measure has been determined.

4.1 The Simulation Design

For the first part of the simulations, the sample size n was chosen 50000, i. e. the
algorithm was run with 50000 randomly chosen failure patterns. For the second
part of the simulation the sample size was n = 5000. The confidence level 1 − α
was chosen 0.99. In a table one can look up Φ−1(0.995) ≈ 2.58—a quantile of
the normal distribution. Therefore, the accuracy is

|Xn − μ| ≤ Sn√
50000

· 2.58 ≈ 0.01154 · Sn

and
|Xn − μ| ≤ Sn√

5000
· 2.58 ≈ 0.03649 · Sn

on confidence level 99% using the central limit theorem, where Xn are the F-
measures of the sample, Xn is the sample mean of the F-measures, μ is the
true mean of the F-measure, and Sn is the sample standard deviation of the
F-measures. μ is the F-measure to be determined. Xn are the simulation results.
The above formulae, thus, yield the accuracy of the simulation results.

The failure pattern was randomly generated. The area θA of the failure pattern
was determined by the failure rate θ and the area A of the input domain. For the
block pattern, a square was chosen randomly totally within the input domain. For
the strip pattern, two adjacent sides and two points on these sides were chosen
randomly. The strip was then constructed centered on the line connecting these
points and its width was computed so that the strip had the desired area θA. Points
near the corners were rejected to avoid overly wide strips. For the point pattern, 50
and alternatively 10 non-overlapping discs with equal radius being totally within
the input domain were randomly generated to achieve the total area θA.

The first part of the simulations were to investigate the performance of the
proposed ART algorithms and to find suitable values for the parameters R and
k. These simulation were done with n = 50000 samples for the following

– failure rates: 0.01, 0.005, 0.002, 0.001, 0.0005
– failure patterns: block, strip, and point (with 50 discs)

and various coverage ratios R and candidate set sizes k.
4 One has to replace k by (i − 1) within the sum in the above formula for D-ART and

RRT, which results in 4F (F + 1)/2 = 2F 2 + 2F .
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The second part of the simulations was performed in order to compare the
novel ART algorithms with related ART algorithms. In this case, only n = 5000
samples were used (due to the runtime of D-ART and RRT). The parameters
of the various ART methods were as follows: RRT (R = 1.5), D-ART (k = 10),
ART by random partitioning with localization and RRT (R = 0.4) resp. D-ART
(k = 3), and ART by bisection with localization and RRT (R = 0.7) resp. D-
ART (k = 13). (The last two parameters have been determined by the first part
of the simulations.) In this case, the above failure rates and patterns were also
used complemented by the point pattern with 10 discs.

For the simulations with equal failure rate and failure pattern, the same gen-
erated failure pattern has been used for each ART method.

4.2 Results and Discussion

The results of the first part of the simulations are shown in Tables 1–5 for the
block pattern. Each table contains the relative5 mean F-measure (in the third

Table 1. Improvement of ART by bisec-
tion with localization with block pattern
and failure rate 0.01

F/FRT Std.Dev./FRT

R k RRT D-ART RRT D-ART
0.0 1 0.741 0.734 0.610 0.609

(±0.007) (±0.007)

0.1 3 0.732 0.678 0.603 0.525
(±0.007) (±0.006)

0.2 5 0.721 0.669 0.594 0.505
(±0.007) (±0.006)

0.3 7 0.713 0.668 0.588 0.492
(±0.007) (±0.006)

0.4 9 0.708 0.663 0.580 0.485
(±0.007) (±0.006)

0.5 11 0.693 0.668 0.560 0.485
(±0.006) (±0.006)

0.6 13 0.691 0.662 0.556 0.479
(±0.006) (±0.006)

0.7 15 0.681 0.667 0.547 0.478
(±0.006) (±0.006)

Table 2. Improvement of ART by bisec-
tion with localization with block pattern
and failure rate 0.005

F/FRT Std.Dev./FRT

R k RRT D-ART RRT D-ART
0.0 1 0.742 0.738 0.629 0.631

(±0.007) (±0.007)

0.1 3 0.733 0.664 0.626 0.526
(±0.007) (±0.006)

0.2 5 0.723 0.657 0.612 0.504
(±0.007) (±0.006)

0.3 7 0.711 0.650 0.598 0.493
(±0.007) (±0.006)

0.4 9 0.701 0.645 0.589 0.482
(±0.007) (±0.006)

0.5 11 0.689 0.649 0.571 0.486
(±0.007) (±0.006)

0.6 13 0.681 0.644 0.559 0.478
(±0.006) (±0.006)

0.7 15 0.675 0.650 0.550 0.482
(±0.006) (±0.006)

and fourth column) along with its accuracy (with 99% confidence) in parentheses
below and the relative standard deviation of the F-measure (in the fifth and sixth
column). The first two columns contain the parameters of the algorithms. The
minimum of the third and fourth column is in bold face.
5 Relative to the theoretical mean F-measure of Random Testing.
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Table 3. Improvement of ART by bisec-
tion with localization with block pattern
and failure rate 0.002

F/FRT Std.Dev./FRT

R k RRT D-ART RRT D-ART
0.0 1 0.731 0.732 0.608 0.609

(±0.007) (±0.007)

0.1 3 0.730 0.660 0.607 0.517
(±0.007) (±0.006)

0.2 5 0.713 0.649 0.594 0.496
(±0.007) (±0.006)

0.3 7 0.704 0.637 0.584 0.484
(±0.007) (±0.006)

0.4 9 0.700 0.639 0.574 0.482
(±0.007) (±0.006)

0.5 11 0.686 0.634 0.560 0.475
(±0.006) (±0.005)

0.6 13 0.675 0.635 0.547 0.475
(±0.006) (±0.005)

0.7 15 0.663 0.635 0.537 0.473
(±0.006) (±0.005)

Table 4. Improvement of ART by bisec-
tion with localization with block pattern
and failure rate 0.001

F/FRT Std.Dev./FRT

R k RRT D-ART RRT D-ART
0.0 1 0.739 0.737 0.633 0.636

(±0.007) (±0.007)

0.1 3 0.732 0.661 0.627 0.527
(±0.007) (±0.006)

0.2 5 0.722 0.644 0.612 0.501
(±0.007) (±0.006)

0.3 7 0.708 0.639 0.601 0.489
(±0.007) (±0.006)

0.4 9 0.699 0.632 0.588 0.482
(±0.007) (±0.006)

0.5 11 0.687 0.629 0.574 0.477
(±0.007) (±0.005)

0.6 13 0.679 0.631 0.561 0.476
(±0.006) (±0.005)

0.7 15 0.671 0.629 0.549 0.473
(±0.006) (±0.005)

The simulation results for ART by bisection and localization with RRT and
the block pattern are best for R = 0.7. For each failure rate, the relative mean
F-measure decreases with increasing R. The case R = 0.0 stands for the original
ART by bisection (without localization). The improvement of ART by bisection
with localization and RRT with R = 0.7 over the original ART by bisection is
between 0.06 and 0.07. The relative mean F-measure for ART by bisection with
localization and RRT with R = 0.7 is between 0.663 and 0.681 for the block
pattern. There is a tendency that the F-measure decreases for decreasing failure
rate—as with the original ART by bisection.

For ART by bisection and localization with D-ART, the simulation results
indicate that a choice of k = 13 seems to be optimal. As above, the choice k = 1
stands for the original ART by bisection. One can observe that the relative mean
F-measure decreases from k = 1 to k = 13 by between 0.07 and 0.10. The relative
mean F-measure for k = 13 is between 0.631 and 0.662.

Therefore, D-ART seems to be the better choice than RRT for ART by bi-
section and localization in case of the block pattern.

Similar simulations have also been made for the strip pattern and the point
pattern (with 50 discs). The results, however, could not be included due to space
limitations.

For the strip pattern and ART by bisection and localization with RRT, a
choice of R = 0.5 seems to be optimal. However there is at most a difference
of 0.01 between the relative mean F-measure for R = 0.5 and R = 0.7. For D-
ART, k = 7 seems to be optimal. But the difference between the relative mean
F-measures for k = 7 and k = 13 is always below 0.007.
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Table 5. Improvement of ART by bisection with localization with block pattern and
failure rate 0.0005

F/FRT Std.Dev./FRT

R k RRT D-ART RRT D-ART
0.0 1 0.733 0.730 0.608 0.608

(±0.007) (±0.007)

0.1 3 0.727 0.653 0.608 0.518
(±0.007) (±0.006)

0.2 5 0.718 0.641 0.598 0.494
(±0.007) (±0.006)

0.3 7 0.709 0.633 0.588 0.483
(±0.007) (±0.006)

0.4 9 0.687 0.634 0.571 0.481
(±0.007) (±0.006)

0.5 11 0.684 0.630 0.557 0.475
(±0.006) (±0.005)

0.6 13 0.675 0.631 0.552 0.474
(±0.006) (±0.005)

0.7 15 0.667 0.628 0.537 0.467
(±0.006) (±0.005)

For the point pattern with 50 discs, the optimal mean values are R = 0.3 and
k = 3. However, the relative mean F-measure differs only up to 0.01 between the
optimal parameter and R = 0.7 resp. k = 13.

Altogether, it seems to be justified to choose R = 0.7 and k = 13, since these
parameters have the greatest influence for the block failure pattern.

The results of the second part of the simulation study is shown in Tables 6–9.
In the second study, the novel ART methods (with parameters R = 0.7 and

Table 6. The mean F-measure of the respective ART method related to the mean
F-measure of Random Testing for the block failure pattern

F − measure/FRT

RRT D-ART ART-RP ART-Bi. ART-RP Loc. ART-Bi. Loc.
Failure Rate RRT D-ART RRT D-ART
θ = 0.0100 0.652 0.672 0.758 0.748 0.671 0.728 0.681 0.665

(±0.017) (±0.018) (±0.024) (±0.023) (±0.020) (±0.022) (±0.020) (±0.017)

θ = 0.0050 0.632 0.654 0.780 0.744 0.679 0.712 0.686 0.649
(±0.016) (±0.018) (±0.025) (±0.023) (±0.021) (±0.022) (±0.020) (±0.017)

θ = 0.0020 0.609 0.650 0.786 0.741 0.675 0.720 0.667 0.638
(±0.016) (±0.018) (±0.024) (±0.023) (±0.020) (±0.022) (±0.020) (±0.017)

θ = 0.0010 0.593 0.638 0.788 0.743 0.692 0.721 0.663 0.636
(±0.016) (±0.018) (±0.025) (±0.023) (±0.021) (±0.022) (±0.020) (±0.017)

θ = 0.0005 0.594 0.642 0.813 0.724 0.688 0.730 0.674 0.617
(±0.015) (±0.018) (±0.026) (±0.022) (±0.020) (±0.023) (±0.020) (±0.017)
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Table 7. The mean F-measure of the respective ART method related to the mean
F-measure of Random Testing for the strip failure pattern

F − measure/FRT

RRT D-ART ART-RP ART-Bi. ART-RP Loc. ART-Bi. Loc.
Failure Rate RRT D-ART RRT D-ART
θ = 0.0100 0.854 0.854 0.954 0.933 0.902 0.934 0.889 0.878

(±0.030) (±0.030) (±0.034) (±0.032) (±0.031) (±0.033) (±0.031) (±0.031)

θ = 0.0050 0.876 0.910 0.954 0.961 0.937 0.952 0.918 0.928
(±0.031) (±0.032) (±0.034) (±0.034) (±0.033) (±0.033) (±0.032) (±0.032)

θ = 0.0020 0.908 0.933 1.011 0.967 0.938 0.973 0.959 0.949
(±0.032) (±0.034) (±0.036) (±0.035) (±0.033) (±0.034) (±0.034) (±0.034)

θ = 0.0010 0.947 0.958 0.982 0.994 0.966 0.957 0.976 0.985
(±0.035) (±0.035) (±0.035) (±0.036) (±0.034) (±0.034) (±0.035) (±0.036)

θ = 0.0005 0.955 0.952 0.994 0.962 0.982 0.980 0.960 0.982
(±0.034) (±0.035) (±0.035) (±0.035) (±0.035) (±0.035) (±0.035) (±0.035)

Table 8. The mean F-measure of the respective ART method related to the mean
F-measure of Random Testing for the point failure pattern with 10 discs

F − measure/FRT

RRT D-ART ART-RP ART-Bi. ART-RP Loc. ART-Bi. Loc.
Failure Rate RRT D-ART RRT D-ART
θ = 0.0100 0.995 0.958 0.948 0.939 0.925 0.938 0.932 0.951

(±0.033) (±0.032) (±0.033) (±0.032) (±0.031) (±0.032) (±0.031) (±0.031)

θ = 0.0050 0.970 0.946 0.956 0.956 0.934 0.935 0.936 0.935
(±0.032) (±0.031) (±0.034) (±0.033) (±0.032) (±0.032) (±0.032) (±0.031)

θ = 0.0020 0.937 0.904 0.943 0.928 0.934 0.918 0.920 0.953
(±0.030) (±0.030) (±0.033) (±0.031) (±0.033) (±0.031) (±0.031) (±0.032)

θ = 0.0010 0.927 0.924 0.963 0.943 0.928 0.915 0.897 0.946
(±0.030) (±0.031) (±0.034) (±0.033) (±0.032) (±0.031) (±0.030) (±0.032)

θ = 0.0005 0.921 0.927 0.942 0.950 0.959 0.918 0.901 0.927
(±0.030) (±0.031) (±0.033) (±0.033) (±0.032) (±0.032) (±0.030) (±0.031)

k = 13) are compared to several other ART methods (also with recommended
parameters as listed in the previous section) using some common failure patterns
and various failure rates. For this study, the sample size was n = 5000 due to the
huge runtime of RRT and D-ART for small failure rates. The following abbrevi-
ation where chosen in the tables: ART by random partitioning (ART-RP), ART
by bisection (ART-Bi.), ART by random partitioning and localization (ART-RP
Loc.) combined with either RRT or D-ART, and finally ART by bisection and
localization (ART-Bi. Loc.) also combine with either RRT or D-ART.

For the block failure pattern, the following observations can be made: The best
known ART methods are D-ART and RRT. ART by bisection and localization
with D-ART (k = 13) is better than D-ART and has only a slightly higher
relative mean F-measure (by about between 0.01 and 0.02) than RRT (with
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Table 9. The mean F-measure of the respective ART method related to the mean
F-measure of Random Testing for the point failure pattern with 50 discs

F − measure/FRT

RRT D-ART ART-RP ART-Bi. ART-RP Loc. ART-Bi. Loc.
Failure Rate RRT D-ART RRT D-ART
θ = 0.0100 1.032 0.998 0.972 0.982 0.999 0.979 0.970 1.026

(±0.036) (±0.036) (±0.035) (±0.035) (±0.037) (±0.035) (±0.035) (±0.036)

θ = 0.0050 1.030 1.006 0.989 0.964 1.005 0.978 1.002 0.990
(±0.036) (±0.037) (±0.035) (±0.034) (±0.036) (±0.035) (±0.036) (±0.036)

θ = 0.0020 0.999 1.016 0.972 0.989 0.991 0.970 0.977 0.985
(±0.036) (±0.036) (±0.034) (±0.036) (±0.036) (±0.035) (±0.035) (±0.035)

θ = 0.0010 0.984 0.994 0.995 0.967 0.980 0.974 1.003 0.997
(±0.035) (±0.035) (±0.036) (±0.035) (±0.035) (±0.035) (±0.036) (±0.036)

θ = 0.0005 0.973 0.981 0.967 0.983 0.968 0.970 1.000 1.003
(±0.035) (±0.035) (±0.035) (±0.036) (±0.034) (±0.036) (±0.036) (±0.036)

k = 10). It is also better than ART by random partitioning and localization [18]
and ART through dynamic partitioning [17]. RT by bisection and localization
with RRT (R = 0.7) is a litte bit worse than the D-ART variant, but always
better than ART through dynamic partitioning and mostly than ART by random
partitioning and localization.

For the strip failure pattern the following can be said: As for the block pattern,
RRT and D-ART are the best known ART methods. ART by bisection and
localization with D-ART is again (mostly) better than ART through dynamic
partitioning and ART by random partitioning. Compared to RRT, it is by at
most 0.04 to 0.05 worse. Both variants of ART by bisection and localization
cannot really be compared due to the accuracy.

For point patterns with 10 discs, ART by bisection and localization with RRT
seems to be the best ART method. However for point patterns with 50 discs,
ART by random partitioning and localization with D-ART performs best. The
novel ART algorithms are at least not worse than Random Testing.

Summarizing, the ART by bisection and localization algorithm combined with
D-ART performs very good for the block pattern—better than D-ART and
nearly as good as RRT. This proposed algorithm is for the strip pattern also
the ART method with computational efficiency and best performance among
all efficient ART algorithms. For point pattern with 10 discs, the RRT variant
of the proposed algorithm is (in most cases) the best ART algorithm. And for
point patterns with 50 discs the presented algorithms are at least noworse than
Random Testing.

5 Conclusion

Two innovative ART algorithms combining ART by bisection and the concept
of localization have been presented. These algorithms need only a linear number
of distance computations in terms of the F-measure—the number of test cases
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necessary to detect the first failure-causing input—, whereas the D-ART and
RRT algorithms need a quadratic number. Furthermore, the new ART algo-
rithms perform better in terms of the F-measure than ART by dynamic parti-
tioning and ART by random partitioning and localization for block, strip, and
point patterns (with 10 discs). And the proposed ART algorithms are not worse
than Random Testing for the point pattern with 50 discs. For the block pattern,
the D-ART variant of the new method even outperforms D-ART. This variant
also performs quite good for the strip pattern. For the point pattern with 10
discs, the RRT variant is even the best ART method.

It has to be pointed out that in the literature various methods for the simula-
tion have been used. Also the point pattern is sometimes simulated by 10 discs
and sometimes by 50 discs. Through a huge comparative simulation the present
paper provides a uniform comparison of the discussed ART methods. This simu-
lation study is based on artificial failure patterns. A similar study with mutated
programs should be performed to evaluate the algorithms with real examples.
Furthermore, it would also be a good idea to compare the ART methods not only
by their F-measure, but also by their runtime. This will be done in an upcoming
study.

The algorithms have been described for two-dimensional bounded input do-
mains of numbers. It can be generalized to similar domains in higher dimensions.
However, it seems not to be trivial to generalize to other types of inputs, since
suitable metric spaces have to be identified.

As shared by all Random Testing and ART methods, there is the need for a
test oracle. If there is no oracle, Random Testing can not be applied. However if
such an oracle is accessible and Random Testing is considered, it is worth to try
the presented algorithms, since their achieved F-measure is comparable to that
of D-ART and RRT, and they are much more efficient regarding runtime than
D-ART and RRT. In most cases, the presented algorithms seem to be the ART
algorithms with the lowest F-measure among all efficient ART algorithms.
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Abstract. HOL-TestGen is a test environment for specification-based
unit testing build upon the proof assistant Isabelle/HOL. While there
is considerable skepticism with regard to interactive theorem provers in
testing communities, we argue that they are a natural choice for (auto-
mated) symbolic computations underlying systematic tests. This holds
in particular for the development on non-trivial formal test plans of com-
plex software, where some parts of the overall activity require inherently
guidance by a test engineer. In this paper, we present the underlying
methods for both black box and white box testing in interactive unit test
scenarios. HOL-TestGen can also be understood as a unifying technical
and conceptual framework for presenting and investigating the variety of
unit test techniques in a logically consistent way.

Keywords: symbolic test case generations, black box testing, white box
testing, theorem proving, interactive testing.

1 Introduction

HOL-TestGen [1, 5, 6] is a test environment for unit testing based on the proof
assistant Isabelle/HOL. Its design rationale is remarkably different from the
mainstream of other symbolic testing tools which are designed to be fully auto-
matic: In our view, the development of tests is an interactive activity, where the
form of test specifications, the abstraction levels used in a test, the solution of
generated logical constraints (for path-conditions, etc.), and the parameters of
the test data selection must be experimented with and adopted up to the point
where the generated tests are sufficiently “good” with respect to an underlying
test adequacy criteria.

Aiming at a fully automatic tool for specification-based test has a number of
consequences: be it for the specification language and for the degree of abstrac-
tion of test specifications, be it for the theories of the underlying data structures,
and be it, last but not least, on the way how not automatically resolvable logical
constraints of a test are finally treated. It may be the case that most of the
generated constraints can (and, of course, should!) be solved by an automated
theorem prover or constraint solver, however, what happens to the remaining
rest? Raising this question and putting the interactive element from the periph-
ery into the center leads in our experience to different answers with respect to
the usable specification language, to the design of the system architecture as well
as to the testing methodology.

W. Grieskamp and C. Weise (Eds.): FATES 2005, LNCS 3997, pp. 87–102, 2006.
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This paper focuses on the latter issue. HOL-TestGen has been used to find
non-trivial bugs in “real” software based on highly automated symbolic compu-
tation processes [6], where theory and implementation are described. But what is
the underlying methodology leading to this result? And are there other ways to
profit from the inactive potentials of HOL-TestGen? We answer these questions
in the main sections of this paper: in Sec. 4, we describe the “best practices”
developed in previous specification-based black box tests. In particular, we show
how the highly automated standard workflow for generating test data can be
enhanced by mixing it with more or less ingenious intermediate theorem prov-
ing steps. In Sec. 5, we will exploit the underlying generality of Isabelle for a
different testing technique in the style of Pathfinder [11], SpecExplorer [8], and
Korat [4]. The approach is based on a suitable semantic presentation of a pro-
gramming language (a “logical embedding”), which can be used to both derive
semantic constraints underlying a test as well as solving them in an integrated
way. Moreover, our approach allows for logging explicit test hypotheses, a con-
cept developed by the authors [6].

We would like to emphasize that all our symbolic computations are based
entirely on conservative theory extensions of HOL and derived rules from them,
such that HOL-TestGen is in fact a proven correct tool (assuming the consistency
of HOL and its correct implementation in Isabelle). We believe that proving the
crucial rules helps to develop a simple, semantically clean and integrated support
of testing techniques.

The contributions and the plan of this paper are as follows: First, we outline
an overall system presentation of HOL-TestGen (Sec. 3), second, we will develop
the interactive methodology of generating specification-based black box tests
(Sec. 4), and finally, we develop a proof of concept for white box testing in our
framework. In particular, we show how our concept of explicit test hypotheses
can be applied in this context (Sec. 5).

2 Foundations

2.1 Isabelle

Isabelle [10] is a generic theorem prover. New object logics can be introduced
by specifying their syntax and inference rules. Among other logics, Isabelle sup-
ports first order logic, Zermelo-Fränkel set theory and HOL, which we choose as
framework for HOL-TestGen.

While Isabelle/HOL is usually coined as “proof assistant”, we use it as symbolic
computation environment. Implementations on Isabelle/HOL can re-use existing
powerful deduction mechanisms such as higher-order resolution and rewriting,
and the overall environment provides a large collection of components ranging
from documentation generators and code-generators to (generic) decision proce-
dures for datatypes and Presburger Arithmetic.

Isabelle can easily be controlled by a programming interface on its implemen-
tation level in SML in a logically safe way, as well as in the Isar level, i.e., a tactic
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proof language in which interactive and automated proofs can be mixed arbi-
trarily. Documents in the Isar format, enriched by the commands provided by
HOL-TestGen, can be processed incrementally within Proof General (see Sec. 3)
as well as in batch mode. These documents can be seen as formal and technically
checked test plan of a program under test.

2.2 Higher-Order Logic

Higher-order logic (HOL) [7, 3] is a classical logic with equality enriched by total
polymorphic1 higher-order functions. It is more expressive than first-order logic,
since e.g., induction schemes can be expressed inside the logic. Pragmatically,
HOL can be viewed as a combination of a typed functional programming lan-
guage like SML or Haskell extended by logical quantifiers. Thus, it often allows
a very natural way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, mul-
tisets, orderings, and various arithmetic theories. Furthermore, it provides the
means for defining data types and recursive function definitions over them in a
style similar to a functional programming language.

Isabelle/HOL processes rules and theorems of the form A1 =⇒ . . . =⇒ An =⇒
An+1, also denoted as [[A1; . . . ; An]] =⇒ An+1. They can be understood as a rule
of the form “from assumptions A1 to An, infer conclusion An+1”. In particular,
the presentation of sub-goals uses this format. We will refer to assumptions also
as constraints in this paper.

3 The HOL-TestGen System

HOL-TestGen is an interactive (semi-automated) test tool for specification based
unit tests. Its theory and implementation has been described in [5], here, we
briefly review main concepts and outline the standard workflow. The latter is
divided into four phases: writing the test specification, generation of test cases
along with a test theorem, generation of test data (TD), and the test execution
(result verification) phase involving runs of the “real code” of the program under
test. Once a test theory is completed, documents can be generated that represent
a formal test plan. See Fig. 1 for the overall workflow.

The properties of program under test are specified in HOL in the test speci-
fication (TS). The system will decompose the test specification in the test case
generation phase into a semantically equivalent test theorem which has the form:

[[TD1; ...; TDn; THYP H1; ...; THYP Hm]] =⇒ TS

where THYP is a constant (semantically: an identity) used to mark the test hy-
potheses that are underlying this test. At present, HOL-TestGen uses only uni-
formity and regularity Hypothesis; for example, a uniformity hypothesis means
informally “if the program conforms to one instance of a case to TS, it conforms
1 To be more specific: parametric polymorphism.
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Fig. 1. Overview of the Standard Workflow of HOL-TestGen

to all instances of this case to TS” (see Sec.4.2 for a formal presentation). Thus,
a test theorem has the following meaning:

If the program under test passes the tests for all TDi successfully, and if it
satisfies all test hypothesis, it conforms to the test specification.

In this sense, a test theorem bridges the gap between test and verification. h The
theory containing test theory, test specifications, configurations of the test data
and test script generation, possibly extended by proofs for rules that support

Fig. 2. A HOL-TestGen Session Using Proof General
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the overall process, is written in an extension of the Isar language [12]. It can be
processed in batch mode, but also using the Proof General interface interactively,
see Fig. 2. This interface allows for interactively stepping through a test theory
(in the upper sub-window) and the sub-window below shows the corresponding
system state. A system state may be a proof state in a test theorem development,
or the result of inspections of generated test data or a list of test hypothesis.

After test data generation, HOL-TestGen can produces a test script driving
the test using the provided test harness. The test script together with the test
harness stimulate the code for the program under test built into the test exe-
cutable. Executing the test executable runs the test and results in a test trace
showing possible errors in the implementation (see lower window in Fig. 2).

4 Interactive Black Box Testing

In this section we present the method for the current main application of HOL-
TestGen: generating test data for black box testing of side-effect free programs.
As running example we chose the red-black trees already used in [5] to find an error
in the “real” sml/NJ library. However, this time we will show how errors were
found and how test data can be generated that actually explores the program
under test to a satisfactory degree.

4.1 The Test Specification

Red-black trees store the balancing information in one additional bit per node,
which is called the “color of a node”. This is either red or black. A valid (balanced)
red-black tree must fulfill the following three invariants:

1. Red Invariant: each red node has a black parent.
2. Strong Red Invariant: the root is red and the red invariant holds.
3. Black Invariant: each path from the root to a leaf has the same number of

black nodes.

An invariant can be represented as recursive predicate; for the red invariant this
looks as follows:

types ’a item = ”’a :: ord key”
datatype color = R | B
datatype ’a tree = E | T color ”’a tree” ”’a item” ”’a tree”

consts redinv :: ”’a tree ⇒ bool”
recdef redinv ”measure (λt. ( size t))”

”redinv E = True”
”redinv (T B a y b) = (redinv a ∧ redinv b)”
”redinv (T R (T R a x b) y c) = False”
”redinv (T R a x (T R b y c)) = False”
”redinv (T R a x b) = (redinv a ∧ redinv b)”
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Assume we want to test that insertion or deletion (summarized by the place-
holder prog) fulfill the black invariant. Hence, we are searching for test data
fulfilling the premise of the following test specification:
test spec ”( isord t∧ isin y t∧strong redinv t∧ blackinv t)−→ (blackinv(prog(y, t )))”

which we found after some experimenting (weaker preconditions lead to under-
standable exceptions of the program under test).

4.2 First Attempt: The “Standard Workflow”

Test Case Generation. Now we can automatically generate test cases in
a model checking-like fashion by applying the gen test cases method. The
method generates data-structures (here: trees) up to a certain depth and per-
forms case splitting over all possible cases; remaining constraints are simplified.
The default depth-parameter of the method is set to 3. Finally, the resulting test
theorem is stored in a test environment :

apply( gen test cases ”prog”)
store test thm ” red and black inv ”

This fairly simple setup generates already 25 subgoals containing 12 test cases,
altogether with non-trivial constraints, among them:
1. [[ x1=x2 ]] =⇒ blackinv (prog (x1, T B E x2 E))
2. [[ x1=x6; max B height (T x5 x4 x3 x2) = 0; blackinv x2;

max B height x4 = max B height x2; blackinv x4; redinv (T x5 x4 x3 x2 );
∀ x. (x= x3 −→x6 < x) ∧ ( isin x x4 −→ x6 < x) ∧ ( isin x x2 −→ x6 < x);
∀ x. isin x x2 −→ x3 < x; ∀ x. isin x x4 −→ x < x3; isord x2; isord x4]]
=⇒ blackinv (prog (x1, T B E x6 (T x5 x4 x3 x2)))

An example for a generated uniformity test hypothesis is:
THYP ((∃ x xa. x = xa −→blackinv (prog (x, T B E xa E))) −→

(∀ x xa. x = xa −→ blackinv (prog (x, T B E xa E))));

Test Data Generation. Generating concrete test data already takes a re-
markable length of time, as it’s quite unlikely that the random solver generates
values that fulfill these ordering constraints. Therefore we restrict the attempts
(iterations) the random solver takes for solving a single test case to 40
testgen params [ iterations =40]
gen test data ” red and black inv ”

which is sadly not sufficient to solve all conditions, e.g., we obtain test cases like
RSF −→ blackinv (prog (100, T B E 7 E))
RSF −→ blackinv (prog (83, T B (T B (T B E −8 E) 57 (T R E 13 E)) −62 E))
blackinv (prog (−91, T B (T R E −91 E) 5 E))
RSF −→ blackinv (prog (−33, T B (T R E −2 E) 37 E))

were RSF marks unsolved cases. Analyzing the generated test data reveals that
only very few had been resolved and therefore lead to inconclusive tests. To
compute more conclusive test data, we can interactively increase the number of
iterations, which reveals that we need to set iterations to more than 100 to find
a suitable set of test data reliably.
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Test Script Generation. Now we generate the test script for PUT being im-
plemented by wrapper.del:

gen test script ” rbt script .sml” ” red and black inv ” ”PUT” ”wrapper.del”

In principle, any SML-system should be able to run the provided test-harness
and generated test-script. Using their specific facilities for calling foreign code,
testing of non-SML implementations, e.g., Java, or C, is supported. Depending
on the SML-system, the test execution can be done within an interpreter or using
a compiled test executable. Testing implementations written in SML is straight-
forward. For testing non-SML implementations it is in most cases sufficient to
provide a quite simple “wrapper” doing some datatype conversion.

Test Result Verification. Running the test executable for red and black inv
results in an output similar to Tab. 1, showing successful test cases, failures
(i.e., the implementation violates the post condition) and warning caused by
unresolved cased (where the random solver returns RSF as pre-condition). In the
latter case, the PUT is still executed (and throws in our example an exception).
Already in this highly automatic set-up, we were able to produce the reported

Table 1. RBT Test trace

Test Results:
Test 0 - SUCCESS, result: E
Test 1 - SUCCESS, result: T(R,E,67,E)
Test 2 - SUCCESS, result: T(B,E,~88,E)
Test 3 - ** WARNING: pre cond. false (exception during post cond.)
Test 4 - ** WARNING: pre cond. false (exception during post cond.)
Test 5 - SUCCESS, result: T(R,E,30,E)
Test 6 - SUCCESS, result: T(B,E,73,E)
Test 7 - ** WARNING: pre cond. false (exception during post cond.)
Test 8 - ** WARNING: pre cond. false (exception during post cond.)
Test 9 - *** FAILURE: post cond. false, result: T(B,T(B,E,~92,E),~11,E)
Test 10 - SUCCESS, result: T(B,E,19,T(R,E,98,E))
Test 11 - SUCCESS, result: T(B,T(R,E,8,E),16,E)

Summary:
Number successful tests cases: 7 of 12 (ca. 58%)
Number of warnings: 4 of 12 (ca. 33%)
Number of errors: 0 of 12 (ca. 0%)
Number of failures: 1 of 12 (ca. 8%)
Number of fatal errors: 0 of 12 (ca. 0%)

error in the SML library. However, based on the test depth 3 (which represents
the limit of the standard approach if we restrict ourselves to a time investment of
10 minutes for the overall run) we cannot have trees with more than three nodes
on the level of the test case generation. Of course, random solving increases the



94 A.D. Brucker and B. Wolff

depth of the trees sporadically, as can be seen from the test result, but in an
unsystematic way. Thus, the program under test has obviously not been tested
satisfactorily, and we need means to treat test data sets with higher depth.

4.3 Second Attempt: Using “Abstract Test Data”

By inspection of the constraints of the test theorem, one immediately identifies
predicates for which solutions are difficult to find by a random process (a measure
for this difficulty could be the percentage of trees up to depth k, that make
this predicate valid. One can easily convince oneself, that this percentage is
decreasing asymptotically).

Repeatedly, ground instances were needed for terms of the form:

1. max B height x = 0
2. max B height y = max B height z
3. blackinv x
4. redinv x
5. isord x

How can the constraint resolution be helped by user guidance? The idea is to
establish ground instances by hand and to feed them into the resolution process
as abstract test cases, see [6]. But which of the patterns should we choose? It
turns out that max B height X = 0 (is the number of black nodes on any path
0?) has many candidates, but after depth 2 they are all ruled out by redinv).
Thus, we picked redinv and provided ground instances for it by hand: redinv E,
redinv (T R E (5:: int ) E), redinv (T B E (5:: int ) E), redinv (T R E 2 (T B E
(5:: int ) E)), redinv ((T R (T B E (5:: int ) E) 6 E)), redinv (T R (T B E 3 E)4 (
T B E (5:: int ) E)), etc. Each of these ground instances is in fact established by
an automatic proof:
lemma redinv 6[test ” red and black inv ” ]:

”redinv(T R (T B E 3 E) 4 (T B E (5:: int ) E))” by auto

The pragma [ test ” red and black inv ”] is used to associate this theorem as
abstract test data to the data generation
gen test data ” red and black inv ”

An analysis of the test results (omitted here for space reasons) reveals that the
tests are now a more complete set of trees of depth 4.

Note, however, that the “samples” of abstract data had been chosen with
hindsight to the overall test: they all represent ordered trees that happen to
fulfill the black invariant, generated within the time frame of 10 minutes as in
the previous run. Abstract test data that do not fulfill all the other possible
constraints represent dead ends and are no help for the constraint solving phase.

4.4 Third Approach: Using a Little Theorem Proving

The question arises how this problematic aspect of ingeniously added abstract
test data can be overcome and be systematized for our example. One answer is
a characterization theorem of redinv :
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lemma redinv enumerate:
”redinv x =((x = E)

∨ (∃ a y b. x = T B a y b ∧ redinv a ∧ redinv b)
∨ (∃ y. x = T R E y E)
∨ (∃ y am an ao. x = T R E y (T B am an ao) ∧

redinv (T B am an ao))
∨ (∃ ae af ag y. x = (T R (T B ae af ag) y E)

∧ redinv (T B ae af ag))
∨ (∃ ae af ag y T B bg bh bi.

x = (T R (T B ae af ag) y (T B bg bh bi)) ∧
( redinv (T B ae af ag) ∧ redinv (T B bg bh bi))))”

The precise form of this lemma can be inferred when inspecting the rule set
generated by Isabelle from the redinv -definition. The proof is a routine induction
proof which nevertheless needs knowledge about theorem proving in general
and Isabelle in particular. This lemma is used to improve the form of the test
theorem. To be a bit more precise, we insert after the test case generation a
sequence of Isar-methods that resolve in any constraint of the form redinv x the
above lemma, recomputes the TNF and repeats this process once. The resulting
test is now of depth 5 and constitutes now a quite extensive test of our program
(again in the time-frame of 10 minutes for a complete run).

4.5 Summing Up

In our experience, increasing the number of iterations also increases remarkably
the time needed for test data generation. On the other side, this underpins the
usual criticism with respect to random testing: deeply nested (either in the sense
of data or execution paths) program structures cannot be tested seriously using
pure random tests; guidance generated by test cases is crucially needed.

Further, our results show that highly automated approaches yield useful “first
shots” but heavily profit from more or less ingenious user interaction. A trade-off
must be made here between the time needed to run a test (including generation),
the quality of the test and the time and experience needed in advanced techniques
such as Isabelle theorem proving.

5 Imperative White Box Tests

Our framework is not restricted to black box test of side-effect free programs.
Using a logical embedding (a representation in HOL comprising syntax and se-
mantics) for an imperative language, it can be used to implement and analyze
various white-box test techniques.

5.1 The Language IMP: An Overview

The Isabelle distribution comes already with various logical embeddings: IMP,
IMPP, NanoJava, or MicroJava, and more are available in the literature. For the
sake of this presentation, we chose the simplest one, IMP, which is intended as
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formalization of a textbook on programming language semantics [13, 9], and pro-
vides as such a particularly clean and complete collection of several semantics of
IMP (natural semantics, transition semantics, denotational semantics, axiomatic
semantics), proofs of their relations (e.g., denotational is equivalent to natural)
and proofs of crucial meta-properties (axiomatic semantics is sound and relative
complete).

The basic concepts of IMP are values val (just natural numbers, for exam-
ple), and states state = loc ⇒ val . Boolean expressions bexp and atomic ex-
pressions (aexp) are represented as functions from state to val or bool. Thus,
IMP has in fact no syntax of its own, but just inherits the expression language
of HOL at this place2. The syntax of IMP commands com is then defined as
data type:

datatype com = SKIP
| ”:==” loc aexp ( infixl 60)
| Semi com com (” ; ” [60, 60] 10)
| Cond bexp com com (” IF THEN ELSE ” 60)
| While bexp com (” WHILE DO ” 60)

where the text in the parenthesis are just pragmas for the powerful Isabelle
syntax engine to allow the usual infix/mixfix notation.

One of the operational semantics of IMP is a relation of triples evalc :: (
com ×state × state ) set ((cm,s,s ’) ∈ evalc is denoted 〈cm,s〉 −→c s ’) which is
inductively defined as follows:

inductive evalc intros
”〈SKIP , s〉 −→c s”
”〈x :== a,s〉 −→c s [x:=(a s )]”
”[[ 〈c0,s〉 −→c s1 ; 〈cs1 ,s1〉 −→c s2 ]] =⇒ 〈c0;cs1 , s〉 −→c s2”
”[[ b s ; 〈c0,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c 1, s〉 −→c s1”
”[[ ¬b s; 〈c1,s〉 −→c s1 ]] =⇒ 〈 IF b THEN c0 ELSE c1, s〉 −→c s1”
”[[¬b s]] =⇒ 〈 WHILE b DO c, s〉 −→c s”
”[[ b s ; 〈c, s〉−→c s1 ; 〈 WHILE b DO c, s1〉−→c s2]]=⇒ 〈 WHILE b DO c, s〉 −→c s2”

The usual notation s [x:=v] is defined by λ y. if y=x then v else s y. For these
inductive rules, an alternative rule set is derived that can be processed by the
efficient Isabelle rewriter directly:

〈 SKIP , s〉 −→c s ’ = (s’ = s)
〈 x :== a, s〉 −→c s ’ = (s’ = s[x := a s ])
b s =⇒ 〈 IF b THEN d ELSE e, s〉 −→c s ’ = 〈 d,s〉 −→c s ’
. . .

We omit the definition of the denotational semantics reflecting the partial cor-
rectness C :: com ⇒( state × state ) set (see [2] for details), but it is linked to
the operational semantics via the theorem ((s , t) ∈ C c) = 〈c,s〉 −→c t. On the
denotational level, program transformation rules relevant for the next section
can be shown easily:

2 This technique is also called a “shallow embedding”.
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C(SKIP ;c) = C(c) C(c;SKIP ) = C(c) C((c;d);e) = C(c;(d;e))
C(( IF b THEN c ELSE d);e) = C( IF b THEN c;e ELSE d;e)
C( WHILE b DO c) = C( IF b THEN c; WHILE b DO c ELSE SKIP )

On the level of the denotational semantics, the usual notion of “valid Hoare
triple” is formalized as:

|= {P} c {Q} ≡ ∀ s t. (s , t) ∈ C c −→ P s −→ Q t

where P, Q are assertions, i.e., functions from state to bool.

5.2 Unwinding IMP Programs

To perform white box tests in the style of Pathfinder [11], SpecExplorer [8], or
Korat [4], it is necessary to make the program paths explicit in the program rep-
resentation and amenable to the rules of the operational semantics. Therefore,
a pre-processing step is necessary that unfolds all WHILE -loops up to a cer-
tain limit, the unwind-factor k. This principle can also be applied in a language
extension with procedure calls such as IMPP, also available in the Isabelle distri-
bution. Additionally, the program should be transformed into a certain normal
form to be efficiently processed (left associative sequential compositions must be
avoided since they lead to an existentially quantified intermediate states which
are more difficult to process in the symbolic computation). We define two recur-
sive functions on com-terms that perform both these normalizations as well as
the unwinding up to k. Note, that we will not program this function outside the
logic as (tactic), i.e., a control program in SML, but inside HOL, such that we can
also prove its correctness with respect to the IMP semantics:

consts ”@@” :: ”[com,com] ⇒com” ( infixr 70)
primrec ”SKIP @@ c = c”

”(x:== E) @@ c = ((x:== E); c)”
”(c;d) @@ e = (c; d @@ e)”
”( IF b THEN c ELSE d) @@ e = ( IF b THEN c @@ e ELSE d @@ e)”
”( WHILE b DO c) @@ e = (( WHILE b DO c); e)”

consts unwind :: ”nat ×com ⇒com”
recdef unwind ”less than <∗lex∗> measure(λ s. size s)”

”unwind(n, SKIP) = SKIP”
”unwind(n, a :== E) = (a :== E)”
”unwind(n, IF b THEN c ELSE d) = IF b THEN unwind(n,c) ELSE unwind(n,d)”
”unwind(n, WHILE b DO c) =

( if 0 < n
then IF b THEN unwind(n,c)@@unwind(n− 1,WHILE b DO c) ELSE SKIP
else WHILE b DO unwind(0, c))”

”unwind(n, SKIP ; c) = unwind(n, c)”
”unwind(n, c ; SKIP ) = unwind(n, c)”
”unwind(n, ( IF b THEN c ELSE d) ; e) =

( IF b THEN (unwind(n,c;e)) ELSE (unwind(n,d;e)))”
”unwind(n, (c ; d); e) = (unwind(n, c;d))@@(unwind(n,e))”
”unwind(n, c ; d) = (unwind(n, c))@@(unwind(n, d))”



98 A.D. Brucker and B. Wolff

The primitive recursive auxiliary function c@@d appends a command d to the
last command in c that is reachable from the root via sequential composition
modes. The more tricky unwind function unfolds WHILE -loops as long as the
unwind factor is positive and performs the program normal form computation
along the program equivalences as discussed in Sec. 5.1.

The Isabelle Recursion Package adopts a “First Fit” pattern matching strat-
egy (similar to SML). This means that in overlapping cases, the first is taken into
account with higher priority—this is reflected on the level of the rewrite rule set
generated from this definition. Thus, the last equation in the recursive definition
is a catch-all rule for sequential composition.

Now we derived the following facts over these definitions:

Lemma 1 (Termination). Both functions terminate.

Proof. In the case of @@ this is trivial due to machine checked primitive re-
cursion; in case of unwind a proof has to be performed that the lexicographic
composition of the standard ordering < and the standard term ordering is
well-founded and respected by the inner calls in this recursive definition. This
proof is done fully automatically.

Lemma 2 (Correctness). C(c @@ d)= C(c;d) and C(unwind(n,c)) = C(c)

Proof. For @@, a straight-forward induction suffices. As for unwind, the proof is
non-trivial, but routine (generalization over n, induction over c, intricate case
splitting, application of semantic equivalences of Sec. 5.1).

5.3 Generating Path Conditions

As example program, we chose a little program that computes the square-root
of a natural number. In Isabelle/IMP syntax, we can define it as follows:

constdefs squareroot :: ”[ loc , loc , loc , loc ] ⇒ com”
”squareroot tm sum i a ≡ (( tm :== λs. 1);

(( sum :== λs. 1);
(( i :== λs. 0);

WHILE λs. (s sum) <= (s a) DO
(( i :== λs. (s i ) + 1);
((tm :== λs. (s tm) + 2);
(sum :== λs. (s tm) + (s sum)))))))

where the locations (references) are the input into the program to express se-
mantically constraints on them, as we will see later. The shallow embedding
of the expressions has the consequence that program variable accesses must be
represented as explicit application of the state s (at this program point) to a lo-
cation representing this variable. Hence, we implicitly require a pre-parser that
makes these bindings of program variables explicit.

We need one further derived rule If split , which is necessary to expand the
case splits produced for each path:

[[b s =⇒ 〈c, s〉−→c s ’; ¬ b s =⇒ 〈d,s〉−→c s ’ ]] =⇒ 〈 IF b THEN c ELSE d,s〉−→c s ’
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Putting everything together, we can now formulate the generation of symbolic
states for the program squareroot as follows:

lemma derive test cases : assumes no alias : . . .
shows ”〈unwind(3, squareroot tm sum i a), s〉 −→c s ’”

where the omitted technical side-condition no alias specifies that the locations
tm,sum,i,a are pairwise disjoint. Now, the canonical tactic script:

apply(simp add: squareroot def )
apply( rule If split , simp all add: update def no alias )+

unfolds the definition of squareroot, and then enters in a loop that performs
the computation of unwind (including path normalization), the case splitting
along the If split rule discussed above, the evaluation of state constraints and
the simplification of the arithmetic constraints until no further changes can be
achieved. The resulting proof-state consists of the following goals:3

1. 9 ≤ s a =⇒ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
2. [[4 ≤ s a; 8 < s a ]] =⇒ s ’ = s ( i := 2, tm := 5, sum := 9)
3. [[ 1 ≤ s a; s a < 4]] =⇒ s ’ = s ( i := 1, tm := 3, sum := 4)
4. s a = 0 =⇒ s ’ = s(tm := 1, sum := 1, i := 0)

The resulting proof state enumerates the possible symbolic states including their
path conditions.4

5.4 Treating Assertions and Test Hypothesises

Traditional pre and post conditions can be expressed via the validity relation for
Hoare Triple, e.g.: |= {pre} squareroot tm sum i a {post a i} where pre is just
λx. True and post a i is λ s . (s i )∗(s i )≤(s a) ∧ s a < (s i + 1)∗(s i + 1).

The setup of a specification based white box test is now produced by the
derived rule:

|={P} c {Q} = ∀ s t. 〈unwind (n, c ), s〉 −→c t −→ P s −→ Q t

The result of this rule application is piped into the previous process which con-
joins the preconditions with the path conditions and attempts to solve them;
the post condition is then constructed over the post state constructed by the
natural semantics.

Assertions can be introduced into our language as follows: First, we declare an
uninterpreted constant STOP as command of the language. Then, a construct like
ASSERT b c can be introduced as abbreviation for ASSERT b c ≡ IF b THEN
c ELSE STOP, and further constructs like an annotated while loop AWHILE b

inv c are introduced analogously.
3 The presentation has been slightly syntactically simplified.
4 The computing time for unwind-factor 10 based on this simplistic tactic remains

under a few seconds, including pretty-printing.
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It remains to show how white box testing fits methodically into our frame-
work, where we try to generate test hypothesis that make the “logical difference”
between a test and the verification of the test specification explicit. Obviously,
the only new element related to white box test is the unwinding parameter; if
exhausted, this leads to program fragments that represent the “set of untested
execution paths” of a program under test. In our running example, this lead
to the first sub-goal in the final proof state. Turned into an explicit unwinding
k test hypothesis, this condition for resulting from the test theorem: |={pre}
squareroot tm sum i a {post a i} looks as follows:

1. THYP(9 ≤s a −→ 〈 WHILE λs. s sum ≤s a
DO i :== λs. Suc (s i ) ;

(tm :== λs. Suc (Suc (s tm)) ;
sum :== λs. s tm + s sum ),

s( i := 3, tm := 7, sum := 16)〉 −→c s ’
∧ post a i s ’)

Testing a program in this setting means that all symbolic state transitions in-
cluding their path conditions must satisfy the post condition whenever the pre
condition holds. This is the case in our example, and the system will find the
satisfiability of the generated constraints without need for random solving in this
case. The only remaining assumption is the test hypothesis shown above which
reflects that we have tested the program and not verified it.

To sum up, we described a symbolic computation process for white box tests in
the language IMP, that generates from a given, potentially annotated program a
test theorem including the test hypotheses automatically. This test theorem can
be fed into the test data generation phase to find ground instances for particular
paths as before.

5.5 Blowing Up IMP

The reader might object that the language IMP, having only Boolean and arith-
metic side-effect free expressions and non-recursive, macro-like procedures, is too
academic to be of practical importance. In contrast, we argue that IMP is a rea-
sonable core language which can be “blown-up” fairly easy to larger languages,
in large parts without adding further complexity to the symbolic computation
process presented so far.

We discuss three extensions of IMP, two more straight-forward, one more
involved, to give an impression over the potential of our approach:

1. Mutual recursion: Just apply our approach to embedding IMPP.
2. Arbitrary expressions: exchange val in the IMP semantics by a universe

which is a sum of the HOL data types.
3. Objects: Extend our approach to an embedding like NanoJava.

In more detail, extension 2 requires that program variables must be presented as
triples (loc ,emb::α−→val,proj :: val−→α) consisting of the traditional location,
and a pair of functions (representing the typing of the program and variable)
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that allow for injection and projection of HOL-values into the val universe of
IMP. Program variable accesses, which has been encoded by s a so far, will be s
!a where s !(a,emb,prj) is defined by prj (s a). The assignment semantics of IMP
must be adopted analogously. This technique paves the way for lists, options,
strings, and further user-defined data types. Expressions over user-defined HOL
data-types can now be processed by the gen test cases -method which is at the
heart of HOL-TestGen. As a result of these extensions, we have an SML-like
language with data-types and HOL-expressions inside.

The extension 3 involves sub-classing, method calls with late-binding and
object creation; as such, a lot more machinery is therefore involved whose tactical
control will be feasible in our opinion, but require substantial more work.

6 Conclusion

We have shown the pragmatics of our Isabelle/HOL-based testing tool HOL-
TestGen [1, 5] gained from previous experiences for specification based black
box tests. While some aspects of the symbolic computations are fully automatic
(like data separation lemma generation, generation of test hypothesis, TNF-
computations, test data generations and solving), other aspects like constraint
solving may profit from some theorem proving and experiments with “appropri-
ate” formulations of test specifications/test theorems. We have also developed a
method to use HOL-TestGen for specification based white box tests.

The symbolic computation process is fully presented inside HOL, so no tool
integration and conversion issues are involved which may be critical both for
correctness and efficiency. Since the necessary symbolic transformation processes
can be based on derived rules,5 HOL-TestGen can be used as a tool for a seam-
less conceptual study of these techniques including formal correctness proofs,
their prototypical implementation and even their industry strength implementa-
tion. The latter, will require substantial effort in tactic programming and tool
integration.

Although the example for imperative white-box test is based on a conceptual
language and therefore merely a proof of concept than a proof of technology, we
believe that the approach can scale up with respect to size of the supported lan-
guage while maintaining reasonable efficiency of the underlying symbolic compu-
tations. Thus, we believe that HOL-TestGen can be seen as unifying framework
in which a wide range of unit test techniques can be presented in a mathemati-
cally clean way.
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Abstract. This paper presents a formal framework to test both the
functional and temporal behaviors in systems where temporal aspects
are critical. Different implementation relations, depending on both the
interpretation of time and on the (non-)determinism of specifications
and/or implementations, are presented and related. We also study how
tests cases are defined and applied to implementations. A test derivation
algorithm, producing sound and complete test suites, is presented.

1 Introduction

The complexity of current systems necessarily leads to a higher relevance of
testing issues during the development project. The scale and heterogeneity of
present projects makes it impossible for developers to have an overall view of
the system. Thus, it is difficult to foresee those errors that are either critical
or more probable. Since the construction of a system requires to use several
components, developed by different teams, reliability of these components is a
must. This is a requirement not only for final customers but also for developers.
In this context, formal testing techniques provide systematic procedures to check
implementations in such a way that the coverage of critical parts/aspects of the
system depends less on the intuition of the tester.

The application of formal testing techniques to check the correctness of a
system requires to identify the critical aspects of the system, that is, those as-
pects that will make the difference between correct and incorrect behavior. While
the relevant aspects of some systems only concern what they do, in some other
systems it is equally relevant how they do what they do. For instance, the prob-
ability of an event to happen may be considered critical in a non-deterministic
system. If a system runs in an environment where computational resources are
shared by several systems, the consumption of resources may be relevant as well.
Similarly, the time consumed by each operation should be considered critical in
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a real-time system. Actually, some operations that are concluded after a given
deadline could be useless or unacceptable for the user of the system.

In this paper we present a formal testing methodology where the temporal
behavior of systems is considered. A simple extension of the classical concept of
Extended Finite State Machine will allow a specifier to explicitly denote tem-
poral requirements for each action of a system. We study conformance testing
relations to relate implementations, belonging to a given set Imp, with specifi-
cations, taken from another set Spec. Our study considers time extensions of
the relation confnt [NR02], which is based on the update of conf [BSS86] to
deal with inputs and outputs: ioco [Tre96, Tre99]. In order to cope with time,
we do not take into account only that a system may perform a given action
but we also record the amount of time that the system needs to do so. Un-
fortunately, conformance testing relations for timed systems have not been yet
extensively studied, and only very recently some work has been performed in this
line (e.g. [NR02, BB04, LMN04]). We propose five timed conformance relations
according to the interpretation of good implementation for a given specification.
Regarding our relations, time aspects add some extra complexity. For example,
even though an implementation I had the same traces as a specification S, we
should not consider that I conforms to S if the implementation is always slower
than the specification. Moreover, it can be the case that a system performs the
same sequence of actions for different times. These facts motivate the definition
of several conformance relations. For example, it can be said that an implemen-
tation conforms to a specification if the implementation is always faster, or if the
implementation is at least as fast as the worst case of the specification. We think
that the relations that we introduce in this paper can be useful for the study
of conformance for other models of timed systems. For example, the definitions
can be easily adapted to timed automata [AD94]. Other definitions of timed I/O
automata (e.g. [HNTC99, SVD01]) are restricted to deterministic (regarding ac-
tions) behavior. In this case, some of our relations will be equivalent among them
(i.e. they will relate the same automata).

Regarding the application of testing to timed systems, several proposals have
appeared in the literature (e.g. [MMM95, CL97, HNTC99, SVD01, EDK02,
ED03]). Our proposal differs from these ones in several points, mainly because
the treatment of time is different. We do not have a notion of clock(s) together
with time constraints; we associate time to the execution of actions (represent-
ing the time that it takes for a system to perform an action). Besides, the time
that a transition needs to be performed is not fixed (e.g. the transition t takes
3 units of time). This time depends on the values of the variables. In fact, since
those values may change after each transition, it may happen that if we per-
form two (or more) times a transition then each performance takes a different
amount of time. With respect to the application of tests to implementations, the
above mentioned non-deterministic temporal behavior of specifications and/or
implementations requires that tests work in a specific manner. For example, if
we apply a test and we observe that the implementation takes less time than the
one required by the specification, then this single application of the test allows
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us to know that the implementation may be faster than the specification, but
not that it must be so.

The rest of the paper is organized as follows. In Section 2 we present our
model to represent timed systems. In Section 3 we study implementation re-
lations for our framework where temporal behavior is taken into account. We
also relate these implementation relations. In Section 4 we show how test cases
are defined and describe how to apply them to implementations. In Section 5
we introduce a test derivation algorithm to produce sound and complete, with
respect to three of our conformance relations, test suites. Next, in Section 6, we
consider two additional relations that can be used when implementations show
non-deterministic behavior. We also relate these new relations with the previous
ones. Finally, in Section 7 we present our conclusions and some directions for
further research.

2 A Timed Extension of the EFSM Model

In this section we introduce our timed extension of the classical extended finite
state machine model. The main difference with respect to usual EFSMs consists in
the addition of time. In order to represent our timed EFSMs we consider that the
number of different variables is equal to m. We will assume that each variable
xi belongs to the domain Di. Thus, the values of all the variables at a given
point of time can be represented by a tuple belonging to the cartesian product
D1 ×D2 × · · · ×Dm. Regarding the domain to represent time, we consider that
time values belong to a certain domain Time (e.g. we may take a continuous
domain such as IR+ or a discrete domain such as IN).

Definition 1. Let Time be the domain to define time values, D1, . . . , Dm be
sets of values, and let us consider D = D1 × D2 × · · · × Dm. A Timed Extended
Finite State Machine, in the following TEFSM, is a tuple M = (S, I, O, T r, sin, ȳ)
where S is a finite set of states, I is the set of input actions, O is the set of
output actions, Tr is the set of transitions, sin is the initial state, and ȳ ∈ D is
a tuple of variables.

Each transition t ∈ Tr is a tuple t = (s, s′, i, o, Q, Z, C) where s, s′ ∈ S are
the initial and final states of the transition, i ∈ I and o ∈ O are the input and
output actions, respectively, associated with the transition, Q : D −→ Bool is
a predicate on the set of variables, Z : D −→ D is a transformation over the
current variables, and C : D −→ Time is the time that the transition needs to
be completed.

A configuration in M is a pair (s, x̄) where s ∈ S is the current state and
x̄ ∈ D is the tuple containing the current value of the variables.

We say that tr = (s, s′, (i1/o1, . . . , ir/or), Q, Z, C) is a (timed) trace of M if
there exist transitions t1, . . . , tr ∈ Tr such that t1 = (s, s1, i1, o1, Q1, Z1, C1),. . .,
tr = (sr−1, s

′, ir, or, Qr, Zr, Cr), the predicate Q is defined such that it holds
Q(x̄) = (Q1(x̄) ∧ Q2(Z1(x̄)) ∧ . . . ∧ Qr(Zr−1(. . . (Z1(x̄)) . . .))), the trans-
formation Z is defined as Z(x̄) = Zr(Zr−1(. . . (Z1(x̄)) . . .)), and C is defined as
C(x̄) = C1(x̄) + C2(Z1(x̄)) + · · · + Cr(Zr−1(. . . (Z1(x̄)) . . .)).
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We say that i1/o1, . . . , ir/or is a non-timed evolution, or simply evolution, of
M if there exists a trace (sin, s′, (i1/o1, . . . , ir/or), Q, Z, C) of M such that Q(ȳ)
holds. We denote by NTEvol(M) the set of non-timed evolutions of M . We say
that the pair ((i1/o1, . . . , ir/or), v) is a timed evolution of M if there exists a trace
(sin, s′, (i1/o1, . . . , ir/or), Q, Z, C) of M such that Q(ȳ) holds and v = C(ȳ). We
denote by TEvol(M) the set of timed evolutions of M . Let e ∈ NTEvol(M) and
v ∈ Time be such that (e, v) ∈ TEvol(M). We say that (e, v) is an instance of e.

We say that M presents non-observable non-deterministic behavior if there
exist s, s1, s2 ∈ S, i ∈ I, o ∈ O, Q1, Q2 : D −→ Bool, Z1, Z2 : D −→ D, and
C1, C2 : D −→ Time such that (s, s1, i, o, Q1, Z1, C1), (s, s2, i, o, Q2, Z2, C2) ∈ Tr.

��

Intuitively, for a configuration (s, x̄), a transition t = (s, s′, i, o, Q, Z, C) indicates
that if the machine is in the state s, receives the input i, and the predicate Q holds
for x̄, then after C(x̄) units of time the machine emits the output o and the values
of the variables are transformed according to Z. Timed traces are defined as
sequences of transitions. In this case, the predicate, the transformation function,
and the time associated with the trace are computed from the ones corresponding
to each transition belonging to the sequence. Let us note that different instances
of the same evolution may appear in a specification as result of the different
configurations produced after traversing the corresponding TEFSM. Finally, let
us remark that the notion of non-observable non-determinism is less restrictive
than the notion of observable non-determinism. For example, it allows to have
both the transitions (s, s1, i, o1, Q1, Z1, C1) and (s, s2, i, o2, Q2, Z2, C2), as long
as o1  = o2.

Example 1. In Figure 1 we present two TEFSMs. For example, let us suppose that
the initial value of variables is x̄ = (2, 0, 0, 2) and that the initial state of M1
is s1. Then, the transition t12 can be performed and it will take time 1

2 . After
that, the value of the variables will be given by the tuple (3, 0, 0, 1). ��

3 (Timed) Implementation Relations

In this section we introduce our implementation relations. These relations are
appropriate timed extensions of the relation confnt [NR02]. All of them follow
the same pattern: An implementation I conforms to a specification S if for any
possible evolution of S the outputs that the implementation I may perform
after a given input are a subset of those for the specification. This pattern is
borrowed from ioco [Tre96, Tre99] but we do not consider quiescent states (that
is, states where no external outputs are available). In addition to the non-timed
conformance of the implementation, we require some time conditions to hold
(this is a major difference with respect to ioco where time is not considered).
For example, we may ask an implementation to be always faster than the time
constraints imposed by the specification. The different considerations of time
produce that there is not a unique way to define an implementation relation.
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s1

s2 s3

a1/b1 a2/b2

a3/b3

a4/b4

M1

a1/b1

I = {a1, a2, a3, a4}, O = {b1, b2, b3, b4}

t12 = (s1, s2, a1, b1, Q1, Z1, C1)
t13 = (s1, s3, a2, b2, Q2, Z2, C2)
t32 = (s2, s3, a3, b3, Q3, Z3, C3)
t21 = (s2, s1, a4, b4, Q4, Z4, C4)
t22 = (s2, s2, a1, b1, Q5, Z5, C5)

Zi(x̄) = x̄ +
(1, 0, 0, −1) if i ∈ {1, 2, 5}
(0, 1, −1, 0) if i ∈ {3, 4}

Qi(x̄) ≡ Zi(x̄) ≥ 0̄ ∧
xi > 0 if i ∈ {1, 2, 3, 4}
x1 > 0 if i = 5

Ci(x̄) =

1
xi

if i ∈ {1, 2, 3, 4} ∧ xi �= 0

1
x1

if i = 5 ∧ x1 �= 0

s1b1/a4 b2/a3

M2

I = {b1, b2}, O = {a3, a4}

t1 = (s1, s1, b1, a4, Q1, Z1, C1)
t2 = (s1, s1, b2, a3, Q2, Z2, C2)

Zi(x̄) = x̄ +
(1, 1, −1, −1) if i = 1

(1, 0, 0, 0) if i = 2

Qi(x̄) ≡ Zi(x̄) ≥ 0̄ ∧
x1 > 0 ∧ x2 > 0 if i = 1

x3 > 0 if i = 2

Ci(x̄) =

1
xi·x2

if i = 1 ∧ x1 �= 0 ∧ x2 �= 0

1
x3

if i = 2 ∧ x3 �= 0

We suppose that x̄ ∈ IR4
+. We denote by xi the i-th component of x̄.

Fig. 1. Examples of TEFSM

Next, we formally define the sets of specifications and implementations: Spec
and Imp. A specification is a timed extended finite state machine. Regarding
implementations, we consider that they are also given by means of TEFSMs.
In this case, we assume, as usual, that all the input actions are always en-
abled in any state of the implementation. Thus, we can assume that for any
input i and any state of the implementation s there always exists a transition
(s, s, i, null, Q, Z, C) where null is a special (empty) output symbol, Q(x̄) ≡
¬
∨
{Q′(x̄)|∃ a transition (s, s′, i, o, Q′, Z ′, C′)}, Z(x̄)= x̄, and C(x̄) = 0. Let us

note that such a transition will be performed when (and only) no other transi-
tion is available (that is, either there are no transitions outgoing from s or none
of the corresponding predicates hold). Other solutions consist in adding a tran-
sition leading to an error state or generating a transition to the initial state. In
addition, we will initially consider that implementations may not present non-
observable non-deterministic behavior (see Definition 1). The removal of this
restriction gives raise to the definition of two additional conformance relations.

First, we recall the implementation relation confnt where time is not
considered.

Definition 2. Let S and I be two TEFSMs. We say that I non-timely conforms
to S, denoted by I confnt S, if for each non-timed evolution e ∈ NTEvol(S) with
e = (i1/o1, . . . , ir−1/or−1, ir/or), r ≥ 1, we have that

e′ = (i1/o1, . . . , ir−1/or−1, ir/o′r) ∈ NTEvol(I) implies e′ ∈ NTEvol(S) ��
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Next, we introduce our timed implementation relations. In the confa relation
(conforms always) we consider that for any timed evolution of the implementa-
tion (e, t) we have that if e is a non-timed evolution of the specification then
(e, t) is also a timed evolution of the specification. In the confw relation (con-
forms in the worst case) the implementation is forced, for each timed evolution
fulfilling the previous conditions, to be faster than the slowest instance of the
same evolution in the specification. The confb relation (conforms in the best
case) is similar but considering the fastest instance.

Definition 3. Let S and I be two a TEFSMs. We define the following implemen-
tation relations:

– I confa S iff I confnt S and for all timed evolution (e, t) ∈ TEvol(I) we have
e ∈ NTEvol(S) =⇒ (e, t) ∈ TEvol(S).

– I confw S iff I confnt S and for all timed evolution (e, t) ∈ TEvol(I) we have
e ∈ NTEvol(S) =⇒ (∃ t′ : (e, t′) ∈ TEvol(S) ∧ t ≤ t′).

– I confb S iff I confnt S and for all timed evolution (e, t) ∈ TEvol(I) we have
e ∈ NTEvol(S) =⇒ (∀ t′ : ((e, t′) ∈ TEvol(S) =⇒ t ≤ t′)). ��

Theorem 1. [NR02] The relations given in Definition 3 are related as follows:

IconfaS ⇒ IconfwS ⇐ IconfbS ��

It is interesting to note that if specifications are restricted to take always the
same time for each given evolution (independently from the possible derivation
taken for such evolution) then the relations confb and confw would coincide,
but they would be still different from the confa relation.

Lemma 1. Let M = (S, I, O, T r, sin, ȳ) be a TEFSM. Let us suppose that there
do not exist ((i1/o1, . . . , ir/or), t), ((i1/o1, . . . , ir/or), t′) ∈ TEvol(M) with t  = t′.
For any a TEFSM I we have I confb M iff I confw M . ��

4 Definition and Application of Test Cases

A test represents a sequence of inputs applied to an implementation under test.
Once an output is received, we check whether it belongs to the set of expected
ones or not. In the latter case, a fail signal is produced. In the former case, either
a pass signal is emitted (indicating successful termination) or the testing process
continues by applying another input. If we are testing an implementation with
input and output sets I and O, respectively, tests are deterministic acyclic I/O
labelled transition systems (i.e. trees) with a strict alternation between an input
action and the set of output actions. After an output action we may find either
a leaf or another input action. Leaves can be labelled either by pass or by fail.
In the first case we add a time stamp. This time will be contrasted with the one
that the implementation took to arrive to that point.
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T1

a1

fail

b3 b4

a2

fail

b4 b3

a1

pass

b4

fail

b3

fail

null

fail

null

fail

null

T2

a1

fail

b3 b4

a2

fail

b4

pass

b3

fail

null

fail

null

T3

a1

fail

b3

pass

b4

fail

null

T4

a1

fail

b3 b4

a2

fail

b4 b3

a2

pass

b4

fail

b3

fail

null

fail

null

fail

null

Fig. 2. Examples of Test Cases

Definition 4. A test case is a tuple T = (S, I, O, T r, s0, SI , SO, SF , SP , C)
where S is the set of states, I and O are disjoint sets of input and output
actions, respectively, Tr ⊆ S × I ∪O ×S is the transition relation, s0 ∈ S is the
initial state, and the sets SI , SO, SF , SP ⊆ S are a partition of S. The transition
relation and the sets of states fulfill the following conditions:

– SI is the set of input states. We have that s0 ∈ SI . For all input state s ∈ SI

there exists a unique outgoing transition (s, a, s′) ∈ Tr. For this transition
we have that a ∈ I and s′ ∈ SO.

– SO is the set of output states. For all output state s ∈ SO we have that for
all o ∈ O there exists a unique state s′ such that (s, o, s′) ∈ Tr. In this case,
s′ /∈ SO. Moreover, there do not exist i ∈ I, s′ ∈ S such that (s, i, s′) ∈ Tr.

– SF and SP are the sets of fail and pass states, respectively. We say that these
states are terminal. Besides, for all state s ∈ SF ∪ SP we have that there do
not exist a ∈ I ∪ O and s′ ∈ S such that (s, a, s′) ∈ Tr.

Finally, C : SP −→ Time is a function associating time stamps with passing
states.

Let σ = i1/o1, . . . , ir/or. We write T
σ=⇒ s, if s ∈ SF ∪ SP and there exist

states s12, s21, s22, . . . sr1, sr2 ∈ S such that {(s0, i1, s12), (sr2, or, s)} ⊆ Tr, for
all 2 ≤ j ≤ r we have (sj1, ij, sj2) ∈ Tr, and for all 1 ≤ j ≤ r − 1 we have
(sj2, oj , s(j+1)1) ∈ Tr.

We say that a test case T is an instance of the test case T ′ if they only differ
in the associated function C assigning times to passing states.

We say that a test case T is valid if the graph induced by T is a tree with
root at the initial state s0. ��

In Figure 2 we present some examples of test cases (time stamps are omitted).
Next we define the application of a tests suite (i.e. a set of tests) to an implemen-
tation. We say that the tests suite T is passed if for all test the terminal states
reached by the composition of implementation and test are pass states. Besides,
we give timing conditions according to the different implementation relations.
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Definition 5. Let I be a TEFSM, T be a valid test, and sT be a state of T . We
write I ‖ T

σ=⇒t sT if T
σ=⇒ sT and (σ, t) ∈ TEvol(I).

We say that I passes the set of tests T , denoted by pass(I, T ), if for all test
T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ T and σ ∈ NTEvol(I) there do not exist
sT and t such that I ‖ T

σ=⇒t sT and sT ∈SF .
We say that I passes the set of tests T for any time if pass(I, T ) and for

all (σ, t) ∈ TEvol(I) such that T ′ σ=⇒ sT ′
, for some T ′ ∈ T , there exists T =

(S, I, O, T r, s, SI , SO, SF , SP , C) ∈ T such that I ‖ T
σ=⇒t sT with sT ∈ SP

and t=C(sT ).
We say that I passes the set of tests T in the worst time if pass(I, T ) and

for all (σ, t) ∈ TEvol(I) such that T ′ σ=⇒ sT ′
, for some T ′ ∈ T , there exists

T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ T such that I ‖ T
σ=⇒t sT with sT ∈ SP

and t ≤ C(sT ).
We say that I passes the set of tests T in the best time if pass(I, T ) and for

all (σ, t) ∈ TEvol(I) such that T ′ σ=⇒ sT ′
, for some T ′ ∈ T , we have that for all

T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ T such that I ‖ T
σ=⇒t sT with sT ∈ SP

it holds that t ≤ C(sT ). ��

5 Test Derivation

In this section we present an algorithm to derive test cases from specifications.
As usual, the basic idea underlying our algorithm consists in traversing the
specification in order to get all the possible traces in an appropriate way. First,
we introduce some additional notation.

Definition 6. Let M = (S, I, O, T, sin, ȳ) be a TEFSM. We consider the following
sets:

out(s, i, x̄) = {o | ∃ s′, Q, Z, C : (s, s′, i, o, Q,Z, C) ∈ T ∧ Q(x̄)}

after(s, i, o, x̄, t) = (s′, x̄′, t + t′)
∃ Q, Z, C : (s, s′, i, o, Q, Z, C) ∈ T ∧

Q(x̄) ∧ Z(x̄) = x̄′ ∧ C(x̄) = t′

��

The function out(s, i, x̄) computes the set of output actions associated with those
transitions that can be executed from s after receiving the input i, and assuming
that the value of the variables is given by x̄. The function after(s, i, o, x̄, t) com-
putes all the situations that can be reached from a state s after receiving the input
i, producing the output o, for a value of the variables x̄, and after passing t units
of time. By situation we mean triples denoting the reached state, the new value of
the variables, and the cumulated time since the system started its performance.

The previously defined functions can be extended in the natural way to deal
with sets:

out(S, i) =
⋃

(s,x̄)∈S out(s, i, x̄)

after(D, i, o) =
⋃

(s,x̄,t)∈D after(s, i, o, x̄, t)
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Input: A specification M = (S, I,O, T ran, sin, ȳ).
Output: A test case T = (S′, I, O ∪ {null}, T ran′, s0, SI , SO, SF , SP , C).

Initialization:

– S′ := {s0}, T ran′ := SI := SO := SF := SP := C := ∅.
– Saux := {({(sin, ȳ, 0)}, s0)}.

Inductive Cases: Choose one of the following two options until Saux = ∅.
1. if (D, sT ) ∈ Saux then perform the following steps:

(a) Saux := Saux − {(D, sT )}.
(b) SP := SP ∪ {sT }; C(sT ) := {t | (s, x, t) ∈ D}.

2. If Saux = {(D, sT )} and ∃ i ∈ I : out(SM , i) �= ∅, with SM = {(s, x̄) | (s, x̄, t) ∈ D},
then perform the following steps:
(a) Saux := ∅.
(b) Choose i such that out(SM , i) �= ∅.
(c) Consider a fresh state s′ /∈ S′ and let S′ := S′ ∪ {s′}.
(d) SI := SI ∪ {sT }; SO := SO ∪ {s′}; Tran′ := Tran′ ∪ {(sT , i, s′)}.
(e) For all o /∈ out(SM , i) do {null is in this case}

– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– SF := SF ∪ {s′′}; Tran′ := Tran′ ∪ {(s′, o, s′′)}.

(f) For all o ∈ out(SM , i) do
– Consider a fresh state s′′ /∈ S′ and let S′ := S′ ∪ {s′′}.
– Tran′ := Tran′ ∪ {(s′, o, s′′)}.
– D′ := after(D, i, o).
– Saux := Saux ∪ {(D′, s′′)}.

Fig. 3. Derivation of test cases from a specification

The algorithm to derive tests from a specification is given in Figure 3. By con-
sidering the possible non-deterministic choices in the algorithm we may extract
a full set of tests from the specification. For a given specification M , we denote
this set of tests by tests(M). Next we explain how our algorithm works. A set
of pending situations D keeps those triples denoting the possible states, value
of the variables, and time values that could appear in a state of the test whose
definition, that is, its outgoing transitions, has not been yet completed. A pair
(D, sT ) ∈ Saux indicates that we did not complete the state sT of the test and
that the possible situations for that state are given by the set D. Let us remark
that D is a set of situations, instead of a single one, due to the non-determinism
that can appear in the specification.

Example 2. Let M = (S, I, O, T ran, sin, ȳ) be a specification. Suppose that we
have two transitions (s, s′, i, o, Q1, Z1, C1), (s, s′′, i, o, Q2, Z2, C2) ∈ Tran. If we
want to compute the evolutions of M after performing i/o we have to consider
both s′ and s′′. Formally, for a configuration (s, x̄) and taking into account that
the time elapsed so far equals t, we have to consider the set after({(s, x̄, t)}, i, o).
The application of this function will return the different configurations, as well
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as the total elapsed time values, that could be obtained from (s, x̄) and time t
after receiving the input i and generating the output o. ��

Following with the explanation of the algorithm, the set Saux initially contains
a tuple with the initial states (of both specification and test) and the initial
situation of the process (that is, the initial state, the initial value of variables,
and time 0). For each tuple belonging to Saux we may choose one possibility. It
is important to remark that the second step can be applied only when the set
Saux becomes singleton. So, our derived tests correspond to valid tests as given
in Definition 4. The first possibility simply indicates that the state of the test
becomes a passing state. The second possibility takes an input and generates
a transition in the test labelled by this input. Then, the whole sets of outputs
is considered. If the output is not expected by the implementation (step 2.(e)
of the algorithm) then a transition leading to a failing state is created. This
could be simulated by a single branch in the test, labelled by else, leading to a
failing state (in the algorithm we suppose that all the possible outputs appear
in the test). For the expected outputs (step 2.(f) of the algorithm) we create a
transition with the corresponding output action and add the appropriate tuple
to the set Saux.

Finally, let us remark that finite test cases are constructed simply by consid-
ering a step where the second inductive case is not applied.

The next result relates, for a specification S and an implementation I, im-
plementation relations and application of test suites. The non-timed aspects of
our algorithm are based on the algorithm developed for the ioco relation. So, in
spite of the differences, the non-timed part of the proof of our result is a simple
adaptation of that in [Tre96]. Regarding temporal aspects, let us remark that the
existence of different instances of the same timed evolution in the specification
is the reason why only some tests (and for some time values) are forced to be
passed by the implementation (e.g. sometimes we only need the fastest/slowest
test). Specifically, we take those tests matching the requirements of the specific
implementation relation. In this sense, the result holds because the temporal
conditions required to conform to the specification and to pass the test suite are
in fact the same.

Theorem 2. Let S, I be two TEFSMs. We have that:

– I confa S iff I passes tests(S) for any time.
– I confw S iff I passes tests(S) in the worst time.
– I confb S iff I passes tests(S) in the best time.

Proof. We will only prove the first of the results since the technique is similar
for all of them.

First, let us show that I passes tests(S) for any time implies I confa S. We
will use the contrapositive, that is, we will suppose that I confa S does not hold
and we will prove that I does not pass tests(S) for any time. If I confa S does
not hold then we have two possibilities:
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– Either I confnt S does not hold, or
– there exists a temporal evolution (e, t) ∈ TEvol(I) such that e ∈ NTEvol(S)

and (e, t)  ∈ TEvol(S).

Let us consider the first case, that is, we suppose that IconfntS does not hold.
Then, there exist two non-timed evolutions e = (i1/o1, . . . , ir−1/or−1, ir/or)
and e′ = (i1/o1, . . . , ir−1/or−1, ir/o′r), with r ≥ 1, such that e ∈ NTEvol(S),
e′ ∈ NTEvol(I), and e′  ∈ NTEvol(S). We have to show that if e ∈ NTEvol(S)
then there exists a test T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ tests(S) such
that T

e=⇒ sT and sT ∈ SP . We can construct this test by applying the algo-
rithm given in Figure 3 and by resolving the non-deterministic choices in the
following way:

for 1 ≤ j ≤ r do
• apply the second inductive case for the input action ij
• apply the first inductive case for all the elements (D, sT ) ∈ Saux

that have been obtained by processing an output different from oj

endfor
apply first inductive case for the last (i.e. remaining) element (D, sT ) ∈ Saux

The previous algorithm generates a test T such that T
e′

=⇒ uT , with uT ∈ SF .
This is so because the last application of the second inductive case for the output
o′r must be necessarily associated to the step 2.(e) since e′  ∈ NTEvol(S). Then,

I ‖T
e′

=⇒t uT for some time t. Given the fact that T ∈ tests(S) we deduce that
pass(I, tests(S)) does not hold. Thus, we conclude I does not pass tests(S)
for any time.

Let us suppose now that I confa S does not hold because there exists a tem-
poral evolution (e, t) ∈ TEvol(I) such that e ∈ NTEvol(S) and (e, t)  ∈ TEvol(S).
Let us consider the same test T that we defined before by taking into consider-
ation the trace e. Since e ∈ NTEvol(S) we have that T

e=⇒ uT , with sT ∈ SP .
Besides, since (e, t) ∈ TEvol(I), we also have I ‖ T

e=⇒t sT . The time stamps
associated with the state sT are generated by considering all the possible time
values in which e could be performed in S. Thus, if (e, t)  ∈ TEvol(S) then
t  ∈ C(sT ). We conclude I does not pass tests(S) for any time.

Let us prove now that I confa S implies I passes tests(S) for any time. We
will use again the contrapositive, that is, we will assume that I does not pass
tests(S) for any time and we will conclude that I confa S does not hold. If I
does not pass tests(S) for any time then we have two possibilities:

– Either pass(I, tests(S)) does not hold, or
– there exists (e, t) ∈ TEvol(I) and T ′ ∈ tests(S) such that T ′ e=⇒ sT ′

but
there does not exist T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ tests(S) such
that I ‖ T

e=⇒t sT , with sT ∈ SP and t ∈ C(sT ).

First, let us assume that I does not pass tests(S) for any time because
pass(I, tests(S)) does not hold. This means that there exists a test T ∈ tests(S)
such that there exist e′ = (i1/o1, . . . , ir−1/or−1, ir/o′r), sT ∈ SF , and t fulfilling
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I ‖ T
e′

=⇒t sT . Then, we have e′ ∈ NTEvol(I) and T
e′

=⇒ sT . According to our
derivation algorithm, a branch of a derived test leads to a fail state only if its as-
sociated output action is not expected in the specification. Thus, e′  ∈ NTEvol(S).
Let us note that our algorithm allows to create fail state only as the result of the
application of the second inductive case. One of the premises of this inductive case
is out(SM , i)  = ∅, that is, the specification is allowed to perform some output ac-
tions after the reception of the corresponding input. Thus, there exists an output
action or and a trace e = (i1/o1, . . . , ir−1/or−1, ir/or) such that e ∈ NTEvol(S).
Given the fact that e′ ∈ NTEvol(I), e′  ∈ NTEvol(S), and e ∈ NTEvol(S), we have
that I confnt S does not hold. We conclude I confa S does not hold.

Let us suppose now that I does not pass tests(S) for any time because there
exist (e, t) ∈ TEvol(I) and T ′ ∈ tests(S) such that T ′ e=⇒ sT ′

but there do not
exist T = (S, I, O, T r, s, SI , SO, SF , SP , C) ∈ tests(S) such that I ‖ T

e=⇒t sT ,
with sT ∈ SP and t ∈ C(sT ). We consider three possibilities. First, if sT ′

is a fail
state then the considerations given in the previous paragraph can be applied.
Thus, I confa S does not hold. Second, if the performance of the trace e in a test
T ′ ∈ tests(S) reaches a state sT ′

that it is neither an acceptance or a fail state,
then we can always find another test T ∈ tests(S) such that the performance
of the sequence e reaches an acceptance state. Such a test T can be obtained
by applying the first inductive case of the algorithm, instead of the second one,
when dealing with the last input of the trace e. Finally, if sT ′

is an acceptance
state then we simply consider T ′ = T . In the last two cases we obtain a test
T such that I ‖ T

e=⇒t sT and sT ∈ SP . Moreover, by taking into account our
initial assumptions, we have t  ∈ C(sT ). Since sT ∈ SP we deduce e ∈ NTEvol(S).
Besides, by considering that t  ∈ C(sT ), we deduce (e, t)  ∈ TEvol(S). Finally,
using that (e, t) ∈ TEvol(I), we conclude I confa S does not hold. ��

As a straightforward corollary we have that the dependencies between confor-
mance relations that we presented in Theorem 1 also hold for the corresponding
testing relations. For instance, since confa ⇒ confw we also deduce that “passes
X at any time” implies “passes X in the worst time.”

6 Removing Restrictions on Implementations

If we allow implementations to present non-observable non-deterministic behav-
ior then we may naturally introduce two more relations. The confsw relation re-
quests that, for each of its evolutions, at least one instance of the implementation
must be faster than the slowest instance, for the same evolution, of the specifi-
cation. The confsb requests that, for each of its evolutions, at least one instance
of the implementation is faster than the fastest instance of the specification.

Definition 7. Let S and I be two TEFSMs. We write I confsw S if I confnt S
and for all evolution (i1/o1, . . . , ir/or) ∈ NTEvol(I) ∩ NTEvol(S) we have

∃ t1, t2 :

⎛
⎝ ((i1/o1, . . . , ir/or), t1) ∈ TEvol(I) ∧

((i1/o1, . . . , ir/or), t2) ∈ TEvol(S) ∧
t1 ≤ t2

⎞
⎠
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We write I confsb S if I confnt S and for all evolution (i1/o1, . . . , ir/or) ∈
NTEvol(I) ∩ NTEvol(S) we have

∃ t1 :
(

((i1/o1, . . . , ir/or), t1) ∈ TEvol(I) ∧
∀ ((i1/o1, . . . , ir/or), t2) ∈ TEvol(S) : t1 ≤ t2

)

��

Next we generalize Lemma 1 to deal with the case where either the implemen-
tation or the specification (or both) are deterministic.

Lemma 2. Let I, S be two TEFSMs. We have the following results:

(1) If for all non-temporal evolution (i1/o1, . . . , ir/or) ∈ NTEvol(S) there do
not exist two different time values t, t′ such that ((i1/o1, . . . , ir/or), t) and
((i1/o1, . . . , ir/or), t′) ∈ TEvol(S), then IconfwS iff IconfbS and IconfswS
iff I confsb S.

(2) If for all non-temporal evolution (i1/o1, . . . , ir/or) ∈ NTEvol(I) there do
not exist two different time values t, t′ such that ((i1/o1, . . . , ir/or), t) and
((i1/o1, . . . , ir/or), t′) ∈ TEvol(I), then IconfwS iff IconfswS and IconfbS
iff I confsb S.

(3) If the conditions of the results (1) and (2) hold then the relations confw,
confb, confsw, and confsb coincide.

Proof. If the condition in (1) holds then the best instance of each evolution
in the specification is actually the worst instance of that evolution. Similarly,
if the condition in (2) holds then the best instance of each evolution in the
implementation is the worst one as well. The last result is obtained from results
(1) and (2) by applying transitivity between relations. ��

Let us note that the relation confa is different from the other relations even
when the temporal behavior of both the specification and the implementation is
deterministic. This is so because confa requires that time values in the imple-
mentation coincide with those in the specification, while other relations require
that time values in the implementation are less than or equal to those of the
specification.

Taking into account these new relations, we can extend Theorem 1 to include
our five timed relations.

Theorem 3. The relations given in Definitions 3 and 7 are related as follows:

I confb S ⇒ I confsb S
⇓ ⇓

I confa S ⇒ I confw S ⇒ I confsw S

Proof Sketch: The relation between confa, confbS, and confw was established
in Theorem 1 and the proof can be found in [NR02]. Thus, we only need to
consider confsb and confsw. If I confw S then we know that each instance of a
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temporal evolution of I needs a time less than or equal to the one correspond-
ing to the slowest instance, for the same evolution, of the specification S. In
particular, there exists an instance fulfilling the condition imposed by confsw.
So, we conclude I confsw S. The same reasoning can be also used to prove that
I confb S implies I confsb S.

Finally, we have to study the relation between confsb and confsw. If IconfsbS
then we have that for any evolution of I there exists an instance being faster
than the fastest instance of the same evolution in S. In particular, this instance
is also faster than the slowest instance of S, so that we conclude I confsw S. ��

7 Conclusions and Future Work

We have presented a methodology for testing both functional and temporal as-
pects of systems where temporal behavior is critical. This requires us to en-
dow tests with temporal requirements. Five implementation relations, differing
in their temporal requirements, have been introduced and related. The non-
determinism of either the implementation or the specification induces some pe-
culiarities in the testing methodology. In particular, when a test suite is applied
to an implementation, the correctness of the temporal behavior is not assessed
by checking the correctness of each test separately, but by checking temporal
constraints over all the tests together. A sound and complete test derivation
algorithm is constructed.

As future work we plan to improve the capability of our framework to express
temporal constraints. In particular, we want to express conditions over the min-
imal time consumed by an action. Symbolic temporal constraints would allow to
express both minimal and maximal bounds in a compact fashion. In addition, we
plan to endow specifications with the capability to express temporal constraints
over both actions and traces. In our current framework, temporal requirements
are applied to traces. So, we assume that a low performance of an action may be
compensated by other previous actions where performance was high. However,
individual actions may have specific temporal requirements in some particular
domains.

Acknowledgments. We would like to thank the anonymous referees for their
helpful remarks.
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Abstract. The paper addresses the problem of conformance test generation 
from input/output FSMs that might be partially specified and nondeterministic. 
Two conformance relations are considered, quasi-reduction and quasi-
equivalence. The former requires that in response to each input sequence 
defined in a specification FSM, a conforming implementation FSM produces 
only output sequences of the specification FSM, while the latter is stronger: a 
conforming implementation FSM must produce all of them and nothing else. 
For each relation, a test generation method is elaborated. The resulting tests are 
proven to be complete, i.e., sound and exhaustive, for a given bound on the 
number of states; they include as special cases checking experiments for 
deterministic FSMs. 

1   Introduction 

Testing software systems often requires taking into account potential nondeterministic 
behavior, when for given sequence of inputs different sequences of outputs can be 
produced. Specifying a system, the developer may use nondeterminism to describe, 
for example, implementation options and allowable interleaving of outputs. Testing 
implementations obtained from a nondeterministic specification, one has to choose a 
conformance relation that either requires the implementation under test to be as 
nondeterministic as its specification or allows it to be less nondeterministic. Test 
generation should take into account a chosen conformance relation, so the resulting 
tests will be different. In this paper, we consider the problem of test generation from a 
Finite State Machine (FSM) with inputs and outputs, which can be nondeterministic, 
moreover, not necessarily completely specified. The latter means that for some 
combinations of states and inputs further behavior of a machine is not defined, any 
behavior of an implementation is considered allowable. The FSM model considered 
in this paper differs from other state-oriented models, such as input/output automata 
or input/output transition systems that are also used to express nondeterminism, labels 
of its transitions are pairs of input and output actions and not single actions. 

The problem of testing from nondeterministic FSMs has been studied since the end 
of eighties of the last century; see the list of references. We can categorize them into 
the following groups: 
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1. Traversal problems [9, 15, 22]. 
2. State distinguishability [1, 2, 3, 10, 21, 22]. 
3. Constructing sound or complete tests [4-7, 11-18, 22]. 
4. Test selection for execution [8, 9, 22]. 

This paper belongs to the third category, where the goal is to develop methods for 
determining a sound or complete test that offers a fault coverage guarantee: an 
implementation FSM passes a test if and only if it conforms to its specification FSM 
(under some additional assumption about the number of its states). Assuming that an 
implementation FSM is complete and nondeterministic; conformance relations to test 
are quasi-equivalence and quasi-reduction, which are similar to trace equivalence or 
trace inclusion (the difference occurs when the specification FSM is not completely 
specified). Such tests include as a special case checking experiments originally 
defined for deterministic machines.  

In particular, we propose methods for generating complete tests (within a given 
bound on the number of states) from an FSM that might be partially specified and 
nondeterministic at the same time. No assumption on state distinguishability is made, 
in other words, the proposed methods equally apply to FSMs that may not be 
minimized.  

This paper is organized as follows. Section 2 presents the notions used to study 
nondeterministic FSMs. In Section 3, we define an FSM test as a nondeterministic 
(tree) FSM that is an unfolding of a specification FSM and define what we mean by a 
complete test. Sections 4 and 5 present methods for generating complete tests w.r.t. 
quasi-equivalence and quasi-reduction relations, respectively. We compare our results 
with previous work in Section 6 and conclude in Section 7. 

2   General Definitions 

Definition 1. A Finite State Machine (FSM) A is a 5-tuple (S, s0, I, O, h), where  
• S is a finite set of states with the initial state s0; 
• I and O are finite non-empty sets of inputs and outputs, respectively, which satisfy 

the condition I ∩ O = ∅; 
• h is a behavior function h: S × I → 2S×O, where 2S×O is the powerset of S × O. 

Definition 2. FSM A = (S, s0, I, O, h) is  

• completely specified (a complete FSM) if h(s, a)  ∅ for all (s, a) ∈ S × I; 
• partially specified (a partial FSM) if h(s, a) = ∅ for some (s, a) ∈ S × I; 
• deterministic if |h(s, a)| ≤ 1 for all (s, a) ∈ S × I; 
• nondeterministic if h(s, a) > 1 for some (s, a) ∈ S × I; 

• observable if the automaton A× = (S, s0, I × O, δ), where δ(s, ao)  s′ iff (s′, o) ∈ 
h(s, a), is deterministic.  

In this paper, we consider only observable machines; one could use a standard 
procedure for automata determinization to convert a given FSM into observable one. 

A word α of the automaton A× in state s is a trace of A in state s; let Tr(s) denote 
the set of all traces of A in state s, while Tr(A) denote the set of traces of A in the 
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initial state. Given sequence α ∈ (IO)*, the input projection of α, denoted α↓I, is a 
sequence obtained from α by erasing symbols in O. Input sequence β ∈ I* is a defined 
input sequence in state s of A if there exists α ∈ Tr(s) such that β = α↓I. We use Ω(s) 
to denote the set of all defined input sequences for state s and Ω(A) for the state s0, 
i.e., for A. Ω(A) = Tr(A)↓I = I* holds for any complete machine A, while for a partial 
FSM Ω(A) ⊆ I*. We define in terms of traces several relations which characterize 
how similar the behavior of different states might be.  

Definition 3. Given FSM A = (S, s0, I, O, h) and s, t ∈ S,  

• s and t are (trace-) equivalent, s  t, if Tr(s) = Tr(t); 

• t is quasi-equivalent to s, t  s, if Ω(t) ⊇ Ω(s) and {β ∈ Tr(s) | β↓I = α} = {β ∈ 
Tr(t) | β↓I = α} for all α ∈ Ω(s); 

• t is trace-included into (is a reduction of) s, t ≤ s, if Tr(t) ⊆ Tr(s); 

• t is a quasi-reduction of s, t  s, if Ω(t) ⊇ Ω(s) and {β ∈ Tr(t) | β↓I = α} ⊆ {β ∈ 
Tr(s) | β↓I = α} for all α ∈ Ω(s); 

• s and t are inseparable, s  t, if {β ∈ Tr(s) | β↓I = α} ∩ {β ∈ Tr(t) | β↓I = α}  ∅ 
for all α ∈ Ω(s) ∩ Ω(t). 

We state some relationships between the relations defined above. 

Proposition 1. If FSM is  

• partial and nondeterministic, then  ⊆ ≤ and  ⊆  ⊆ ; 

• complete, then  =  and  = ≤; 

• deterministic, then  =  and  = ; 

• complete and deterministic, then  =  =  = ≤ = . 
For testing we also need various relations which characterize how dissimilar the 

behavior of different states might be.  

Definition 4. Given FSM A = (S, s0, I, O, h) and s, t ∈ S,  
• t is distinguishable from s w.r.t. the reduction (and quasi-reduction) relation, 

written t  s, if {β ∈ Tr(t) | β↓I = α}  {β ∈ Tr(s) | β↓I = α} for some α ∈ Ω(t) ∩ 

Ω(s); we use the notation t α s when we need to refer to the input sequence α that 
detects that t is not a reduction of s; 

• s and t are distinguishable, s  t, if there exists α ∈ Ω(s) ∩ Ω(t) such that {β ∈ 
Tr(s) | β↓I = α}  {β ∈ Tr(t) | β↓I = α}, called an input sequence distinguishing s 
and t; then the set of traces {β ∈ Tr(s) | β↓I = α} is the distinguishing set of s w.r.t. 
t, denoted d(s, t), and {β ∈ Tr(t) | β↓I = α} is the distinguishing set of t w.r.t. s, 

denoted d(t, s); we also use the notation s α t when we need to refer to the input 
sequence distinguishing s and t; 

• s and t are separable, s  t, if there exists α ∈ Ω(s) ∩ Ω(t) such that {β ∈ Tr(s) | 
β↓I = α} ∩ {β ∈ Tr(t) | β↓I = α} = ∅, called a separating sequence, this fact is also 

denoted s α t.  



 Conformance Tests as Checking Experiments for Partial Nondeterministic FSM 121 

 

We briefly present the intuition captured by these notions. If for two states, s and t, 
of a complete machine, t can produce an output sequence in response to some input 
sequence that s cannot, then t cannot be a (quasi-) reduction of s. However, state s 
may still be a quasi-reduction of t. Similarly, distinguishable states are not equivalent, 
but one may be a quasi-reduction of another. Finally, separable states are not 
equivalent, one state cannot be a quasi-reduction of another, moreover, no other state 
can be a (quasi-) reduction of both states. However, the converse is not necessarily 
true. States that are not separable may still have no common reduction. This is 
reflected in the notion of r-distinguishability [1, 18, 21, 23]. To define it, we first 
introduce several notations. Given (s, a) ∈ S × I, let out(s, a) denote the set of outputs 
produced by A in state s for input a, that is {o | ∃s′ ∈ S s.t. (s′, o) ∈ h(s, a)}. For a 
trace α ∈ Tr(s), s-after-α denotes the state reached by A when it executes the trace α 
from state s. If s is the initial state s0 then instead of s0-after-α we write A-after-α. 

Definition 5. Given FSM A = (S, s0, I, O, h), states s, t ∈ S, 

•  s and t are r(1)-distinguishable if there exists input a such that s a t; 
• given k  > 1, s and t are r(k)-distinguishable, if the states are r(k - 1)-

distinguishable or there exists an input a ∈ I such that for each trace γ ∈ a(out(s, a) 
∩ out(t, a)) states s-after-γ and t-after-γ are r(k - 1)-distinguishable; 

• s and t are r-distinguishable, denoted s  t, if there exists k  > 0 such that states s 
and t are r(k)-distinguishable.  

If s a t for some input a then the set of traces {ab | b ∈ out(s, a)} is the r(1)-
distinguishing set of traces of s w.r.t. t, denoted ρ(s, t); while {ac | c ∈ out(t, a)} is the 
r(1)-distinguishing set of traces of t w.r.t. s, denoted ρ(t, s). If the states s and t are 
r(k)-distinguishable, but not r(k - 1)-distinguishable and there exists an input a ∈ I 
such that for each trace γ ∈ {ab | b ∈ out(s, a) ∩ out(t, a)} states s-after-γ and t-after-γ 
are r(k - 1)-distinguishable, while ρ(s-after-γ, t-after-γ) and ρ(t-after-γ, s-after-γ) are 
their r(k - 1)-distinguishing sets, respectively, then the set of traces ρ(s, t) = {γκ | γ 
∈{ab | b ∈ (out(s, a) ∩ out(t, a)} ∧ κ ∈ ρ(s-after-γ, t-after-γ)} is the r-distinguishing 
set of s w.r.t. t and ρ(t, s) = {γκ | γ ∈ {ab | b ∈ out(s, a) ∩ out(t, a)} ∧ κ∈ ρ(t-after-γ, 
s-after-γ)} is that of t w.r.t. s.  

The above relations could also be applied to states from different machines. 
Considering the disjoint union of the machines, A and B, we have A r B, iff s0 r t0, 

where r ∈ { , , , ≤, , , , }.  
We state some relationships between the relations defined above. 

Proposition 2. If FSM is 

• deterministic, then  =  =  = ; 

• nondeterministic, then  ⊆  ⊆  ⊆ . 

The following proposition adds more on their relationships, in particular, it states 
necessary and sufficient conditions when given two states s1 and s2 of an observable 
FSM A, there exists an FSM B and state t of B such that t is quasi-equivalent to (a 
quasi-reduction of) both states s1 and s2.  
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Proposition 3. Let s1 and s2 be two states of an observable FSM A. 

1. There exists an FSM B and state t of B such that t is quasi-equivalent to both states 
s1 and s2 if and only if states s1 and s2 are not distinguishable.  

2. If states s1 α s2 then for every complete FSM B and for every state t of B it holds 
that {β ∈ Tr(t) | β↓I = α} ≠ {β ∈ Tr(s1) | β↓I = α} or {β ∈ Tr(t) | β↓I = α} ≠ {β ∈ 

Tr(s2) | β↓I = α}, i.e., t α s1 or t α s2. 
3. There exists an FSM B and state t of B such that t is a quasi-reduction of both states 

s1 and s2 if and only if states s1 and s2 are not r-distinguishable.  
4. If states s1 and s2 are r-distinguishable and ρ(s1, s2) and ρ(s2, s1) are corresponding 

r-distinguishing sets then for every FSM B and for every state t of B it holds that 

{β ∈ Tr(t) | β↓I ∈ ρ(s1, s2)↓I}  ρ(s1, s2) or {β ∈ Tr(t) | β↓I ∈ ρ(s2, s1)↓I}  ρ(s2, s1); 
i.e., state t can be distinguished from state s1 with the set ρ(s1, s2) or from state s2 
with the set ρ(s2, s1). 

There exists a simple means to characterize the maximal common behavior of two 
machines.  

Definition 6. Let A = (S, s0, I, O, h) and B = (T, t0, I, O, g) be FSMs. The intersection 
of A and B is an FSM A ∩ B = (Q q0, I, O, ϕ) with the state set Q ⊆ S × T, the initial 
state q0 = (s0t0), and the behavior function ϕ: Q × I → 2Q×O, such that Q is the smallest 
state set obtained by using the following rule (s′t′, o) ∈ ϕ(st, a) iff (s′, o) ∈ h(s, a) and 
(t′, o) ∈ g(t, a). 

The FSM intersection preserves only common traces of the component machines, 
in other words, we have Tr(A ∩ B) = Tr(A) ∩ Tr(B). 

We use the FSM intersection to formulate methods for test generation.  

Proposition 4. Given observable FSMs A and B, let A ∩ B be the intersection of 
FSMs A and B. There exist β ∈ Tr(A ∩ B) and a ∈ I, such that out(B-after-β, a) ≠ 

out(A -after-β, a) if and only if B  A. 
Given state st of the intersection A ∩ B, we say that there exists a distinguishing 

transition (w.r.t. the quasi-equivalence relation) from state st, if there exists a ∈ I, 
such that out(s, a) ≠ out(t, a). 

Proposition 5. Given observable FSMs A and B, there exist β ∈ Tr(A ∩ B) and a ∈ I, 

such that out((A ∩ B)-after-β, a) ≠ out(B-after-β, a) if and only if B  A.  
Given state st of the intersection A ∩ B, we say that there exists a distinguishing 

transition (w.r.t. the quasi-reduction relation) from state st if there exists a ∈ I, such 
that out(st, a) ≠ out(t, a). 

3   FSM Tests 

In this paper, we assume that a specification FSM from which we generate tests is an 
observable machine but not necessarily complete and deterministic, while any 
implementation FSM is complete and observable.  
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Definition 7. Given FSMs A = (S, s0, I, O, h) and U = (T, t0, I, O, λ), U is a test for the 
FSM A (in the state s0) if the following conditions are satisfied:  

• U  A, 
• Tr(U) is finite (i.e., U has no cycles), 
• U-after-α = U-after-β implies α = β for all α, β ∈ Tr(U) (i.e., U is a tree). 

If U is a test for FSM A such that A  U then we sometimes call a test U an unfolding 
of A. Any test of A can be obtained by transforming the graph of A into a tree, while 
skipping some inputs and outputs of A. The tree structure of a test is fully determined 
by the set of its traces, so we can always use Tr(U) to refer to the test U. Note that 
inputs (outputs) of the specification machine are also inputs (outputs) of a test, so a 
tester, executing such a test, applies inputs of the test to an implementation under test 
and observe its outputs. 

A test may have transitions with different outputs from a same state and under the 
same input. A test U is input-homogeneous if for each two traces α, β ∈ Tr(U), such 
that α↓I = β↓I, the test U has a trace αγ if and only if it has a trace βκ, κ↓I = γ↓I. For 
input-homogeneous tests, an output produced by an implementation under test does 
not decide which next input to apply. However, in a test that is not input-
homogeneous, an observed output may decide which input to choose for execution. 
Such adaptiveness may become necessary when a specification FSM is partial to 
avoid using in tests its unspecified inputs. These inputs can even be forbidden to 
apply, so they are not used in the definitions of conformance relations considered in 
this paper.  

A test may have transitions with different inputs from a same state. We assume, 
therefore, that a reliable reset operation is available in any implementation, so a tester 
executing such a test selects one among alternative inputs during a particular test run. 
The tester produces the verdict fail whenever the implementation FSM executes an 
input/output sequence that is not a trace of the test. To produce the verdict pass, the 
tester has to repeatedly execute every input in each state of the test until there is a 
sufficient confidence that the implementation FSM exhibited all nondeterministic 
options, according to some fairness, called also complete testing assumption [12]. The 
verdict pass expresses a chosen notion of conformance of an implementation FSM to 
a specification FSM.  

To characterize conformance in this paper, we use quasi-equivalence and quasi-
reduction relations. The quasi-reduction conformance relation requires that in 
response to each input sequence defined in the specification FSM a conforming 
implementation FSM produces only output sequences of the specification FSM. The 
quasi-equivalence conformance relation is stronger than the quasi-reduction: a 
conforming implementation FSM must produce all the output sequences of the 
specification FSM for each defined input sequence and only them.  

Let ℑ(Α) be a set of complete observable (implementation) machines over the 
input alphabet of A, called a fault domain. FSM B ∈ ℑ(A) is a conforming 
implementation machine of A w.r.t. the quasi-equivalence (quasi-reduction) relation if 

B  A (B  A).  

Definition 8. Given a test U for the specification FSM A and an implementation FSM 
B ∈ ℑ(A),  
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• B passes the test U for quasi-equivalence (quasi-reduction) relation, if B  U (B  
U). The test U is sound for FSM A in the fault domain ℑ(A) w.r.t. quasi-
equivalence (quasi-reduction) relation, if any B ∈ ℑ(A), which is a conforming 
implementation machine of A w.r.t. quasi-equivalence (quasi-reduction) relation, 
passes the test U. 

• B fails U for quasi-equivalence (quasi-reduction) relation if B  U (B  U). The 
test U is exhaustive for FSM A in the fault domain ℑ(A) w.r.t. quasi-equivalence 
(quasi-reduction) relation, if any B ∈ ℑ(A), which is not a conforming 
implementation FSM of A, fails the test U.  

• The test U is complete for FSM A in ℑ(A) w.r.t. quasi-equivalence (quasi-
reduction) relation, if it is sound and exhaustive in the fault domain ℑ(A) w.r.t. 
quasi-equivalence (quasi-reduction) relation. 
The set ℑ(A) that contains all complete observable FSM with at most m states is 

denoted ℑm(A). A test is m-complete if it is complete in the fault domain ℑm(A). 
Clearly, an m-complete test is also k-complete for any k < m.  

There exist partial FSMs for which a complete test is easy to determine. Those are 
FSMs that have no cycling behavior, as stated in the following.  

Proposition 6. Given a specification FSM A such that the set of traces Tr(A) is finite 
and an arbitrary fault domain ℑ(A), the unfolding U of A such that Tr(U) = Tr(A) is a 
test complete in ℑ(A) w.r.t. quasi-equivalence and quasi-reduction relations. 

Thus, as opposed to complete FSMs (whose behavior is cyclic), some partial FSMs 
have a complete test regardless of a bound m on the number of states in 
implementation machines and conformance relation. Systematic methods are required 
to generate m-complete tests for a general type of nondeterministic FSMs and quasi-
equivalence as well as quasi-reduction relations. Tests complete for one relation are 
not necessary complete for the other, so methods should be specialized for each 
relation. 

In the following sections, we elaborate two methods for determining m-complete 
tests from partially specified nondeterministic FSMs w.r.t. both conformance 
relations, quasi-equivalence and quasi-reduction. 

4   Testing for Quasi-equivalence 

4.1   Preliminaries 

The following property of quasi-equivalence relation is essential for constructing tests 
m-complete w.r.t. this relation. 

Lemma 1. If s'  s in A and β ∈ Tr(s) then β ∈ Tr(s') and s'-after-β  s-after-β.  

Given a specification FSM A = (S, s0, I, O, h) and an implementation FSM B = (T, t0, 
I, O, g), the FSM intersection A ∩ B contains the common behavior of the two 
machines. As stated in Proposition 4, for a non-conforming implementation machine 

B ∈ ℑ(A), B  A, the FSM B fails a test U if the test U has a trace β followed by input 
a such that β ∈ Tr(A ∩ B) and out(B-after-β, a) ≠ out(A-after-β, a). To generate a test 
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complete in the fault domain ℑm(A) it is sufficient to find a test for A that has a trace 

with the above property for every B ∈ ℑm(A), B  A. 

Proposition 7. Given a specification FSM A = (S, s0, I, O, h) with n states and an 
implementation FSM B = (T, t0, I, O, g) with m states, let A ∩ B = (Q, q0, I, O, ψ) be 
the intersection of A and B. Then 

1. |Q| ≤ nm; 

2. let (s', t) and (s, t) be states of A ∩ B reached via traces β and γ such that s  s', 
then FSM B fails a test U if Tr(U) ⊇ βd(s, s') ∪ γd(s', s). 

3. let (s', t) and (s, t) be states of A ∩ B reached via traces β and γ, respectively, such 

that s'  s, if FSM B fails a test U, Tr(U) = γV, then FSM B fails a test W such that 
Tr(W) ⊇ βV. 

Proposition 7.1 implies the tight upper bound, nm, on tests for partial nondeterministic 
FSMs earlier established for deterministic machines [19, 20]. Proposition 7.2 is a 
corollary to Proposition 3.2, while Proposition 7.3 is implied by Lemma 1.  

4.2   Test Generation Method for Quasi-equivalence 

We formulate the sufficient conditions for the completeness of a test w.r.t. quasi-
equivalence relation. 

Let Pref(β) denote the set of all non-empty prefixes of trace β ∈ (IO)*. Given a 
specification FSM A, states s, p ∈ S and trace β ∈ Tr(s), let Prefs,p(β) be the set {ω | ω 

∈ Pref(β) ∧ s-after-ω  p}. We define a relation s,p on the set Prefs,p(β), such that ω 

s,p ω′ for ω, ω′ ∈ Prefs,p(β), if |ω| ≤ |ω′| and s-after-ω  s-after-ω′.  

Proposition 8. Given an FSM A, states s, p ∈ S and trace β ∈ Tr(s), the relation s,p is 
a partial order on the set Prefs,p(β). 

We denote l(Prefs,p(β), s,p) the length of the poset (Prefs,p(β), s,p), that is the 
cardinality of a longest chain of the poset. We select one of the longest chains of the 

poset (Prefs,p(β), s,p) and denote it Cs,p(β). By definition, we assume that l(Prefs,p(β), 

s,p) = 0 if the set Prefs,p(β) is empty. 
Proposition 7.3 indicates that to obtain an m-complete test it is sufficient to unfold  

FSM A only from certain states of A, in particular, given s'  s, unfold it only from 
state s' and not from s. This leads us to the concept of a core of FSM. Given FSM A, 
we determine a minimal set of states of A, called a core of FSM A, that contains the 
initial state and, for each state s ∈ S, a state quasi-equivalent to s (a set is minimal 
w.r.t. the inclusion ordering). If the machine A has no quasi-equivalent states, the core 
coincides with the state set S. A minimal set K of traces of A is a core cover of A if for 
each state s in the core of A, K has a trace that takes A from the initial state to state s. 
Given a subset R of states of A, we denote KR a minimal subset of K such that ∀s ∈ R 

∃α ∈ KR (A-after-α  s). 
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Let R ⊆ S be such that ∀s1, s2 ∈ R (s1 ≠ s2 implies s1  s2), such a set is called a set 

of pairwise distinguishable states of A, we use RA to denote the set of all such sets of 

states of A. Assume first that there exists R ∈ RA such that m < |R|. We consider a core 
cover K of FSM A and determine a minimal subset KR of K, where for each s ∈ R 

there exists σ ∈ KR such that A-after-σ  s. Proposition 7.2 implies that any test that 
includes the set of traces α∈KR

{αd(A-after-α, s) | s ∈ R} is an m-complete test for 

FSM A w.r.t. the quasi-equivalence relation. Thus, we further assume that for each R 

∈ RA it holds that m ≥ |R|. 
Let K be a core cover of FSM A and G be an unfolding of A, such that Tr(G) = 

αi∈KαiNi, where Ni = {β ∈ Tr(A-after-αi) | Σp∈Rl(PrefA-after-αi,p
(ν), A-after-αi,p

) + |R|  m 

for each proper prefix ν of β and for ∀R ∈ RA and (Tr(A-after-αiβ) = ∅ or ∃R ∈ RA 
s.t. Σp∈Rl(PrefA-after-αi,p

(β), A-after-αi,p
) + |R| = m + 1)}. In words, the unfolding Ni of A 

contains each shortest trace β of state A-after-αi such that a state with no defined 
inputs is reached or the total lengths of posets induced by pairwise distinguishable 
states reaches the value of m - |R| + 1. 

Proposition 9. Given B = (T, t0, I, O, g), B ∈ ℑm(A), B  A, that passes the test G, 
there exist αi ∈ K, β ∈ Ni, such that for any set R ∈ RA if Σp∈Rl(PrefA-after-α

i
,p(β), A-after-α

i
,p) 

+ |R| = m + 1 then there exist (s, t), (s', t), s  s', in the set {(A ∩ B)-after-γ | γ ∈ (Ki(β) 
∪ p∈RαiCA-after-α

i
,p(β))}, where Ki(β) ⊆ K and for each s ∈ (R ∪ {A-after-ω | ω ∈ 

p∈RαiCA-after-α
i
,p(β)}) there exists σ ∈ Ki(β) such that A-after-σ  s. 

Combining now the results of Proposition 9 and Proposition 7.2, we have the 
following method. 

The SC-method for deriving an m-complete test w.r.t. the quasi-equivalence relation. 
Input. FSM A = (S, s0, I, O, h) and an integer m.  
Output. An m-complete test U for FSM A w.r.t. the quasi-equivalence relation. 

Step 1. Determine a core cover K of A and the set of traces U = {β ∈ Tr(A) | β↓I = 
αi↓I ∧ αi ∈ K}.  

Step 2. For each αi ∈ K, determine the set of traces Ni that comprises each shortest 
trace β ∈ Tr(A-after-αi) such that Σp∈Rl(PrefA-after-α

i
,p(β), A-after-α

i
,p) + |R| = m + 1 for 

some set R ∈ RA or (Σp∈Rl(PrefA-after-α
i
,p(β), A-after-α

i
,p) + |R| •  m for all R ∈ RA and Tr(A-

after-αiβ) = ∅).  

Step 3. For each set Ni and each trace β ∈ Ni, select a set R(β) ∈ RA such that 
Σp∈R(β)l(PrefA-after-α

i
,p(β), A-after-α

i
,p) + |R(β)| = m + 1, if it exists, and for each pair (p,  β), 

p ∈ R(β), determine a longest chain CA-after-α
i
,p(β) in the poset (PrefA-after-α

i
,p(β), A-after-α

i
,p).  

Step 4. For each R(β) determine a minimal subset Ki(β) ⊆ K such that for each s 
∈ (R(β) ∪ {A-after-αiω | ω ∈ p∈R(β)CA-after-α

i
,p(β)}) there exists α ∈ Ki(β) such that 

A-after-α  s.   
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Step 5. For each pair of distinguishable states s and s' determine their distinguishing 
traces d(s, s'), d(s', s).  

Step 6. For each Ki(β) determine the sets of traces {μd(A-after-μ, A-after-ω) | μ, ω ∈  
Ki(β)} and {μd(A-after-μ, A-after-αiω) | μ ∈ Ki(β), ω ∈ p∈R(β)Cδ(s

0
,α

i
),p(β)}, and 

include all the obtained traces into the set U.  
Step 7. For each αi ∈  K, and each trace β ∈ Ni, determine the sets of traces {αiωd(A-

after-αiω, A-after-μ)| ω ∈ p∈R(β)CA-after-α
i
,p(β), μ ∈ Ki(β)} and {αiμd(A-after-αiμ, A-

after-αiω)| μ, ω ∈ p∈R(β)CA-after-α
i
,p(β)}, and include all the obtained traces into the 

set U. 

Theorem 1. A test with the set U of traces obtained by the above method is m-
complete w.r.t. the quasi-equivalence relation. 

5   Testing for Quasi-reduction 

5.1   Preliminaries 

The following property of the quasi-reduction relation is essential for constructing 
tests complete w.r.t. this relation. 

Lemma 2. If s'  s in A and β ∈ Tr(s) then β↓I ∈ Ω(s'), while β ∈ Tr(s') such that β↓I 

∈ Ω(s) implies that s'-after-β  s-after-β. 

In case of the quasi-reduction relation, if B = (T, t0, I, O, g) is a non-conforming 

implementation machine of A, B  A, then it fails a test U if and only if the test U has 
a trace β followed by input a such that β ∈ Tr(A ∩ B), out(B-after-β, a) ≠ out((A ∩ 
B)-after-β, a). To generate a test complete in the fault domain ℑm(A) w.r.t. the quasi-
reduction relation it is sufficient to find a test for A that has a trace with the above 

property for every B ∈ ℑm(A), B  A. Similar to the quasi-equivalence relation, m-
complete tests w.r.t. the quasi-reduction relation have a tight upper nm. 

When deriving an m-complete test w.r.t. the quasi-equivalence relation in order to 
shorten the test we use distinguishable states of the specification FSM. The reason is 
no state of any implementation FSM is quasi-equivalent to two distinguishable states 
(Proposition 3.1). However, two distinguishable states can have a common quasi-
reduction, in other words, they could be represented, i.e., “implemented” in a 
conforming implementation machine as a single state that is a quasi-reduction of each 
of these two states of the specification FSM. Due to Proposition 3.3, another, namely, 
r-distinguishability, relation between states of the specification FSM should be used 
when deriving an m-complete test w.r.t. the quasi-reduction relation.  

Proposition 10. Given a specification FSM A = (S, s0, I, O, h) and an implementation 
FSM B = (T, t0, I, O, g), let A ∩ B = (Q, q0, I, O, ψ) be the intersection of A and B. 
Then 

1. let (s', t) and (s, t) be states of A ∩ B reached via traces β and γ such that s  s', 
then FSM B fails a test U if Tr(U) ⊇ βρ(s, s') ∪ γρ(s', s). 
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2. let (s', t) and (s, t) be states of A ∩ B reached via traces β and γ, respectively, such 

that s  s', if FSM B fails a test U, Tr(U) = γV, then FSM B fails a test W such that 
Tr(W) ⊇ βV. 

Proposition 10.1 is a corollary to Proposition 3.4, while Proposition 10.2 is implied 
by Lemma 2. 

Differently from the quasi-equivalence relation, given a conforming implementation 

B of the specification FSM A, B  A, certain states of the specification FSM may not 
be present in the intersection A ∩ B. The reason is FSM B is allowed to produce fewer 
output sequences than A. As a corollary, all states of the specification FSM need not 
be implemented to obtain a conforming implementation. However, these are states of 
the specification FSM that have to be implemented in every conforming 
implementation. Those are deterministically reachable states. 

State s of the specification FSM A is deterministically reachable (d-reachable 
state) if there exists an input sequence α such that all traces with the input projection 
α take the FSM A from the initial state to the state s. The input sequence α is called a 
d-transfer sequence for deterministically reachable state s. Each deterministically 
reachable state has to be implemented in every conforming implementation. The 
specification FSM has at least one deterministically reachable state, namely the initial 
state that is reachable via the empty sequence.  

Proposition 11. Given a specification FSM A and an implementation FSM B that is a 
quasi-reduction of A, let s be a state of the specification FSM. If s is a 
deterministically reachable state then there exists a state t of the implementation FSM 
B such that the intersection A ∩ B has state st. Moreover, if state s is not 
deterministically reachable then there exists a quasi-reduction B of A such that the 
intersection A ∩ B has no state st for any state t of the FSM B. 

5.2   Test Generation Method for Quasi-reduction 

Given a specification FSM A, states s, p ∈ S, and trace β ∈ Tr(s), let Prefs,p(β) be the 

set {ω | ω ∈ Pref(β) ∧ s-after-ω  p}. We define a relation s,p on the set Prefs,p(β), 

such that ω s,p ω′ for ω, ω′ ∈ Prefs,p(β), if |ω| ≤ |ω′| and s-after-ω  s-after-ω′.  

Proposition 12. Given a specification FSM A, states s, p ∈ S and trace β ∈ Tr(s), the 

relation s,p is a partial order on the set Prefs,p(β). 

Let s,p be a partial order relation on the set Prefs,p(β). We select one of the longest 

chains of the poset (Prefs,p(β), s,p) and denote it Cs,p(β).   
Proposition 11 indicates that, deriving a test, it might be unnecessary to unfold 

FSM A from states that are not deterministically reachable, since these states may be 
not implemented in an implementation at hand. Moreover, Proposition 10.2 indicates 
that it is sufficient to unfold FSM A only from certain states of A, in particular, given s 

 s', unfold it only from state s and not from s'. This leads us to the concept of a d-
core of FSM. Given FSM A, we determine a minimal set of states of A, called a 
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d-core of FSM A, that contains the initial state and, for each deterministically 
reachable state s ∈ S, a state that is deterministically reachable and is a quasi-
reduction of s. A minimal set K of traces of A is a d-core cover of A if for each state s 
in the d-core of A, K has the empty sequence and a trace that takes A from the initial 
state to the state s. Given a subset R of states of A, we denote Rd a subset of states of R 
that are deterministically reachable in the FSM A. Given a subset Rd of d-reachable 
states of A, we denote KR a minimal subset of K such that ∀s ∈ Rd ∃α ∈ KR (A-after- 

α  s). 

Let R ⊆ S be such that ∀s1, s2 ∈ R (s1 ≠ s2 implies s1  s2), such a set is called a set 

of pairwise r-distinguishable states of A, we use RA to denote the set of all such sets of 
states of A. 

Assume that there exists a set of d-reachable states Rd ∈ RA such that m < |Rd|. We 
consider a d-core cover K of FSM A and determine a minimal subset KRd of K where 

for each p ∈ Rd there exists σ ∈ KR such that A-after-σ  p. According to Proposition 
10.1, any test U that includes the set of traces α∈KRd

{αρ(A-after-α, s) | s ∈ Rd} is an 

m-complete test for FSM A w.r.t. the quasi-reduction relation. Thus, we further 

assume that for each R ∈ RA it holds that m ≥ |Rd|. 
Let K be a d-core cover of FSM A and G be an unfolding of A, such that Tr(G) = 

αi∈KαiNi, where Ni = {β ∈ Tr(A-after-αi) | Σp∈Rl(PrefA-after-αi,p
(ν), A-after-αi,p

) + |Rd|  

m for each proper prefix ν of β and for ∀R ∈ RA and (Tr(A-after-αiβ) = ∅ or ∃R ∈ RA 
s.t. Σp∈Rl(PrefA-after-αi,p

(β), A-after-αi,p
) + |Rd| = m + 1)}. 

Proposition 13. Given B = (T, t0, I, O, g), B ∈ ℑm(A), B  A, that passes the test G, 
there exist αi ∈ K, β ∈ Ni, such that for any set R ∈ RA if Σp∈Rl(PrefA-after-α

i
,p(β), A-after-α

i
,p) 

+ |Rd| = m + 1 then there exist (s, t) and (s', t), s  s', in the set {(A ∩ B)-after-γ | γ ∈ 
(Ki(β) ∪ p∈RαiCA-after-α

i
,p(β))}, where Ki(β) ⊆ K and for each s ∈ (R ∪ {A-after-ω | ω ∈ 

p∈RαiCA-after-α
i
,p(β)}) that has d-reachable quasi-reduction there exists σ ∈ Ki(β) such 

that A-after-σ  s.  

Combining now the results of Proposition 13 and Proposition 10.1, we have the 
following method. 

The SCR-method for deriving an m-complete test w.r.t. the quasi-reduction relation. 
Input. FSM A = (S, s0, X, Y, h) and an integer m.  
Output. An m-complete test U for FSM A w.r.t. the quasi-reduction relation. 

Step 1. Determine a d-core cover K of A and the set of traces U = {β ∈ Tr(A) | β↓I = 
αi↓I ∧ αi ∈  K}.  

Step 2. For each αi ∈  K, determine the set of traces Ni that comprises each shortest 
trace β ∈ Tr(A-after-αi) such that Σp∈Rl(PrefA-after-α

i
,p(β), A-after-α

i
,p) + |Rd| = m + 1 for 

some set R ∈ RA or (Σp∈Rl(PrefA-after-α
i
,p(β), A-after-α

i
,p) + |Rd| •  m for all R ∈ RA and 

Tr(A-after-αiβ) = ∅).  
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Step 3. For each set Ni and each trace β ∈ Ni, select a set R(β) ∈ RA such that 
Σp∈R(β)l(PrefA-after-α

i
,p(β), A-after-α

i
,p) + |R(β)d| = m + 1, if it exists, and for each pair (p, 

 β), p ∈ R(β), determine a longest chain CA-after-α
i
,p(β) in the poset (PrefA-after-α

i
,p(β), A-

after-α
i
,p).  

Step 4. For each R(β) determine a minimal subset Ki(β) ⊆ K such that for each s ∈ 
(R(β) ∪ {A-after-αiω | ω ∈ p∈R(β)CA-after-α

i
,p(β)}) that has a d-reachable quasi-

reduction, there exists α ∈ Ki(β) such that A-after-α  s.   
Step 5. For each pair of r-distinguishable states s and s' determine their r-

distinguishing traces ρ(s, s'), ρ(s', s).  
Step 6. For each Ki(β) determine the sets of traces {μρ(A-after-μ, A-after-ω) | μ, ω ∈  

Ki(β)} and {μρ(A-after-μ, A-after-αiω) | μ ∈ Ki(β), ω ∈ p∈R(β)Cδ(s
0
,α

i
),p(β)}, and 

include all the obtained traces into the set U.  
Step 7. For each αi ∈  K, and each trace β ∈ Ni, determine the sets of traces {αiωρ(A-

after-αiω, A-after-μ)| ω ∈ p∈R(β)CA-after-α
i
,p(β), μ ∈ Ki(β)} and {αiμρ(A-after-αiμ, A-

after-αiω)| μ, ω ∈ p∈R(β)CA-after-α
i
,p(β)}, and include all the obtained traces into the 

set U. 

Theorem 2. A test with the set U of traces obtained by the above method is m-
complete w.r.t. the quasi-reduction relation. 

6   Related Work 

We elaborated a common approach for generating complete tests for quasi-
equivalence and quasi-reduction relations and presented two methods that implement 
this approach. Several non-trivial distinctions between these methods are due to the 
fact that a conforming implementation w.r.t. quasi-reduction is not required to execute 
each trace of a complete test, as is the case for quasi-equivalence. As a result, not 
every state of a specification FSM may be mapped onto a state of a conforming 
implementation FSM w.r.t. quasi-reduction. Recall that classical checking 
experiments for minimal deterministic complete FSMs test the machine isomorphism 
or homomorphism. 

Applied to (complete or partial) deterministic FSMs, both methods reduce to the 
version of the SC-method presented in [20]. In case of complete nondeterministic 
FSMs, our methods improve earlier works [11, 12, 17, 18, 23]. Compared to those 
results, the proposed methods deliver shorter tests, as they derive traversal sets from 
fewer states, use the rule for terminating traversal sequences (traces) that refines those 
previously used, and more sparingly use separating (distinguishing) sequences. In 
case of minimal complete nondeterministic FSMs and trace equivalence conformance 
relation, complete tests can be determined using adapted versions of methods 
developed for complete deterministic FSMs, as shown, e.g., in [12]. Though, our 
approach does not even require FSMs to be minimal. When a specification FSM is 
partial, trace equivalence is refined to quasi-equivalence, while trace inclusion 
(reduction) to quasi-reduction. Complete tests for quasi-equivalence are considered in 
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[13], where the termination rule for traversal traces is much coarser than the one used 
in the proposed method. Methods for finding complete tests for quasi-reduction are 
reported in [18, 23]. Again, our method never produces longer tests due to features 
mentioned above, namely, compared to all the previous methods, the proposed 
methods build traversal traces from fewer states, use the rules that prune traversal 
traces earlier, and more sparingly use separating (distinguishing) sequences, in 
particular, they are not used after each prefix of traversal traces, as in the previous 
methods.  

All implementation FSMs conforming to the specification FSM w.r.t. quasi-
equivalence share the set of traces of the specification FSM. This implies that a test 
that decides the conformance is the same no matter which particular FSM (for a given 
fault domain) is submitted for testing, as our tests avoid undefined inputs. However, 
this is no longer the case for quasi-reduction. Conforming implementation FSMs 
w.r.t. quasi-reduction can contain different traces for the same set of defined input 
sequences of the specification FSM, i.e., be pairwise distinguishable. This indicates 
that while each of the traces of a complete test is eventually executed when all 
implementation FSMs with at most m states are tested, an m-complete test may 
contain traces that are never executed when only a single implementation is tested. In 
this scenario, we may avoid using m-complete tests, by finding a test for an unknown 
FSM with at most m states. Soundness and exhaustiveness in this case mean that if the 
implementation FSM is a quasi-reduction of its specification FSM then the test should 
produce the pass verdict, otherwise the fail verdict. Clearly, such test may be not 
sound and/or exhaustive for other FSMs in the fault domain. The testing scenario with 
a single implementation FSM requires choosing inputs depending on outputs 
produced by the implementation FSM in response to previous input, so test generation 
and execution have to be merged into a testing on-the-fly procedure. This scenario, 
addressed in [4-6], is different from the one considered in this paper, as we assume 
that same complete test is used no matter which implementation FSM is tested. The 
procedures for test generation from a complete specification FSM, called adaptive in 
[4-6], adopt earlier versions of the SC-method for the reduction relation. Thus 
improvements of this method extend to adaptive methods as well. 

Yet another testing scenario occurs when any implementation FSM derived from a 
given nondeterministic FSM is assumed to be deterministic. In this case, some traces 
of the specification cannot be executed by any deterministic FSM with a known 
number of states, so a complete test constructed for a fault domain with 
nondeterministic FSMs may be redundant. Some results for this scenario are reported 
in [5, 6, 11, 14, 18]. Our SCR-method also applies to this scenario, but does not 
assume that implementation FSMs are deterministic. 

7   Conclusion 

We addressed the problem of conformance testing by generating complete tests from a 
most general type of input/output FSMs, namely partially specified nondeterministic 
FSMs. Completeness is imbedded in the very notion of checking experiments, originally 
defined for deterministic FSMs and recently extended to the nondeterministic case. 
We proposed an approach for deriving tests complete w.r.t. quasi-equivalence and 
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quasi-reduction conformance relations from a general type of FSM. The proposed 
methods surpass the existing methods either in the efficiency (shorter tests) or in the 
applicability (fewer assumptions about specification FSMs). We discussed the 
complexity of tests produced by the proposed methods. The tight upper bound on the 
length of each trace in tests is the product of the numbers of states in specification and 
implementation machines, for nondeterministic and deterministic cases, quasi-
equivalence and quasi-reduction relations. In the worst case, the number of tests 
grows exponentially with the number of states, similar to tests for deterministic 
machines. This implies that the proposed methods scale as the existing methods for 
constructing checking experiments for deterministic FSMs. To us, the completeness 
of tests comes always with the price that includes the scalability of a test generation 
method. Nondeterminism and partiality of a specification cannot improve the 
scalability. All things being equal, the scalability of complete test generation methods 
improves with a smaller fault domain. In this paper, we assumed a coarse fault model 
defined just by a maximal number of states in implementation machines. As a result, 
the fault domain is the universe of all FSMs with given parameters. 

Further research should address test generation with finer fault models (thus, with 
smaller fault domains), generalizing the corresponding fault model-based test 
generation methods for deterministic machines. Our current work includes extending 
the proposed approach to other testing scenarios.  
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Abstract. When testing a system, it is often necessary to execute a sus-
picious trace in a realistic environment. Due to nondeterministic choices
existing in concurrent systems, such a particular trace may not be sched-
uled for execution. Thus it is useful to compute the probability of exe-
cuting the trace. Our probabilistic model of real-time systems requires
that for each transition, the period from the time when its enabling con-
dition becomes satisfied to the time when it is fired is bounded and the
length of the period obeys a probabilistic distribution. This model is not
Markovian if the distribution is not exponential. Therefore it cannot be
analyzed by Markov processes. We propose to use integration to calculate
the probability for a path. Then we discuss the possibility to optimize
the calculation.

1 Introduction

A common result in testing systems is a scenario that is suspicious of being
faulty. Such a scenario, often called an ‘error trace’, is of great value for the
system developers. One can follow the description of the scenario and try to
figure out the location or even the cause for the problem. While the list of events
that constitute the scenario can be easily traced on paper, demonstrating that
the problem really occurred during the execution of the system may be difficult
due to race conditions. Adding code that controls the execution to capture the
particular scenario, as proposed in [16], can be used in discrete systems. But
it typically changes the time constraints in real-time systems and therefore the
checked systems. A naive solution can be to try executing the system several
times given the same initial conditions. However, it is not a priori given how
many times one needs to repeat such an experiment, nor even if it is realistic
to assume that enough repetitions can help. Thus one needs to compute the
probability of executing the suspicious trace in order to decide the times we are
expected to run the system until the scenario occurs.

Another important issue is the frequency of the occurrence of problems found
in the code. In some cases, it is more practical and economical to develop recover-
able code than foolproof one. Given a discovered failure, the decision of whether
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to correct it or let a recovery algorithm try to catch it depends on the probability
of the failure to occur. In such cases, an analysis that estimates the probability
of occurrence of a given scenario under given initial conditions is necessary. Con-
sider a typical situation that a bug is found in a communication protocol. This
bug causes a sent packet to be damaged. If the chance of the bug being triggered
is very small, e.g., one packet out of 100,000 can be damaged, one would allow
retransmitting the damaged packet. On the contrary, if its probability is one out
of 100, one would redesign the protocol. Overall, the probability calculation of
a particular path is of significance in theory and practice. We intend to provide
the methods and tools for such calculations.

In our execution model, we assume that we can control the initial state of
the system to start the execution of the scenario. However, due to concurrency
and real-time constraints, other probabilistic choices may occur. We assume
that each transition that the system can make must be delayed for a random
period, which is bounded by a lower and upper time limit and obeys a continuous
probability distribution, such as uniform distribution or normal distribution.
Such an assumption has gained more and more attention, e.g., [2, 4, 11]. For
simplicity, we consider uniform distribution in this paper, but the result can be
applied to other distributions, as shown in the conclusion. Due to probabilistic
choices in the system description, the probability of executing the system from
a given initial state and making particular choices, depends not only on the
given scenario; it also depends on other probabilistic choices available (but not
taken) by the analysed system. Thus, the probabilistic analysis of a path involves
considering larger parts of the code than only the transitions participating in
the given scenario. Moreover, the particular ordered occurrence of concurrent
transitions in a given path is probabilistic itself. Instead of using a path as a linear
order between occurrences of transitions, it is sometimes more natural to look at
a partial order that can be extracted from a path, and represents dependencies
between transitions, according to the processes in which they participate.

In this paper, such a system is modeled by a transition system. In the liter-
ature, many probabilistic systems have been proposed. Probabilistic timed au-
tomata (PTA) have been studied by [12, 19]. PTA in both of these papers have
discrete probabilistic choices. Thus probability can be calculated using Markov
chains. However, in our model, the execution of a transition in a path might
depend on part of, or even the entire execution history before this transition.
Therefore, the probabilistic model we define is not Markovian if not all of dis-
tributions are exponential. The work in [6] considered continuous-time Markov
chains (CTMC), which can only be generated if all distributions in the model
are exponential distributions.

In order to allow general continuous distributions, a semi-Markov chain model,
which is an extension of CTMC, was studied in [14]. The models defined in
[2, 5, 11, 20, 21] are similar to ours. These works proposed to model systems by
generalized semi-Markov processes (GSMP),an compositional extension of semi-
Markov chains. However, the processes have uncountably many states. In [2],
the processes are projected to a finite state space, which, unfortunately, is not
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Markovian. Although it is possible to approximate the probability of a particular
path in this finite state space, the calculation would suffer from high complex-
ity. In [21], the GSMP is approximated with a continuous-time Markov process
using phase-type distributions and thereafter turned to a discrete-time Markov
process by uniformization. However, this method gives only approximate results.
The algorithm in [11] adopted a similar technique to calculate the probability.
Since the time delay for all transitions on the path from the beginning of en-
abledness to fire are independently determined, it is intuitive to perceive that
the probability to execute the path can be calculated through integration on
multidimensional random variable. A method using integration to model check-
ing stochastic automata was informally discussed [5] through an example. No
concurrency was shown in the example since it contained only one automaton.
An integration formula is presented in [20] for the probability of executing a
transition. However, no discussion on computing that formula was given in the
paper. Similarly, the semantics of the GSMP model has been studied in the con-
text of process algebra, e.g. [10, 17], but no means of computing the probability
of a given path has been reported.

The rest of this paper is organised as follows. The necessary background on
probability is given in Section 2. Section 3 describes transition systems with
probabilistic distribution. In Section 4, we introduce how to calculate the prob-
ability of a path by integration and analyse the complexity of the calculation.
Furthermore, we show the probability can be computed without integration when
our method is applied to exponential distribution. Section 5 discusses optimizing
the probability calculation for a partial order. Section 6 concludes the paper.

2 Probability Background

The content of this section is based on [3]. Let Y1, Y2, . . . , Yn be independent
continuous random variables on a common probability space. Let y1, y2, . . . , yn

be their values and f1(y1), f2(y2), . . . , fn(yn) be their density functions. The n-
dimensional vector (Y1, Y2, . . . , Yn) is called a multidimensional random variable,
whose domain is a set of ordered vectors (y1, y2, . . . , yn). Its density function is
f(y1, . . . , yn). The distribution of the vector, also called the joint distribution of
these variables, is the probability distribution over the region defined by

P (B) = P ((Y1, Y2, . . . , Yn) ∈ B),

where B is a region in the n-dimensional space. The density function of the
vector is

f(y1, . . . , yn) = f1(y1) · · · fn(yn).

Therefore, P (B) is given by the following integral:

P (B) =
∫

· · ·
∫

(Y1,Y2,...,Yn)∈B

f1(y1) · · · fn(yn) dyn · · ·dy1.
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The probability density function for the continuous uniform distribution on
the interval [l, u] (l < u) is

f(x) =
{ 1

u−l l ≤ x ≤ u;
0 elsewhere.

For the sake of simplicity, we say that f(x) is 1
u−l in this paper.

Suppose Y1, Y2, . . . , Yn are continuous random variables with joint density
f(y1, y2, . . . , yn) and X1 = g1(Y1, Y2, . . . , Yn), · · · , Xn = gn(Y1, Y2, . . . , Yn). The
joint density of (X1, . . . , Xn) is then given by f(y1, . . . , yn)|J | where |J | is the
determinant of the Jacobian of the variable transformation, given by

J =

⎛
⎜⎝

∂y1/∂x1 · · · ∂y1/∂xn

...
...

...
∂yn/∂x1 · · · ∂yn/∂xn

⎞
⎟⎠

3 The Model

3.1 Transition Systems

Definition 1. A transition system T = 〈V, Σ〉 includes

– A finite set V of program variables.
– A finite set Σ of transitions. Each transition α ∈ Σ includes the following

components.
• A first order predicate en(α) over the variables V . This is called the

enabling condition of α.
• A transformation Fα : V → V on the program variables V . This trans-

formation is applied to the program variables if a transition is taken.
• lα the lower bound on the period during which en(α) holds before α can

be executed.
• uα the upper bound on the period during which en(α) holds before α must

be executed. We require that lα < uα.
• cl(α) is a local clock that measures the amount of time since α became

enabled. It is a count-down clock [2].

For simplicity, both lα and uα are limited to non-negative integers, though we
use dense time clocks. In addition to the clocks per each transition, we have a
global clock gt. The global clock is used to measure the time elapsed since the
system began to run so that its reading keeps increasing after being started.

The probabilistic characteristic of this system lies in the following behavior:
when a transition α becomes enabled, its clock cl(α) is set to an initial value
which is chosen randomly from the interval [lα, uα] according to uniform distri-
bution. Then the clock begins to count down. When it reaches 0, α is triggered.
If α is disabled before cl(α) reaches 0, cl(α) is set to 0 as well, but α is not
triggered. Any clock except the global clock stops running when its reading is 0.
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Definition 2. A state of a transition system T = 〈V, Σ〉 contains an assignment
to the program variables V and a non-negative real-time value for each transition
clock cl(α) ( α ∈ Σ) and for the global clock gt.

We denote the value of a clock cl(α) in a state s by cl(α)(s) and the value of gt in
s by cl(gt)(s). Similarly, the value of a variable v in s is v(s). We also generalize
this and write V (s) for the valuation of all the variables V at the state s. A
transition α is enabled at state s if en(α) holds in s; then we say that s |= en(α)
holds.

Definition 3. An initial state of a transition system T = 〈V, Σ〉 assigns a non-
negative value to the clock of every transition α ∈ Σ that is enabled in the
initial state. Each value is chosen randomly between lα and uα according to the
uniform distribution. The initial state assigns the value 0 to every clock cl(α′)
for all disabled α′ ∈ Σ in the initial state and to the global clock.

Definition 4. A system S is a pair 〈T , s〉 with s an initial state of T . Thus,
we assume each system has a given initial state.

Probabilistic behavior is reflected in repeated executions, not a single one. We
define a probabilistic execution of the system induced from multiple executions.

Definition 5. A probabilistic execution of a system S is a finite sequence of
the form s0g1α1s1g2α2 . . . where si, gi are states, and αi are transitions. An
execution has to satisfy the following constraints:

– s0 is the initial state of S.
– For any adjacent pair of states si, gi+1 (representing time passing):

• For the clock of any enabled transition α we have that
cl(α)(si) − cl(α)(gi+1) = cl(gt)(gi+1) − cl(gt)(si),

which means that all clocks move at the same speed. The clock of any
disabled transition β remains 0.

• For every variable v ∈ V , v(si) = v(gi+1).
– For any sequence gi, αi, si on the path (the execution of transition αi), the

following hold:
• gi |= en(αi) and V (si) = Fαi(V (gi)).
• cl(αi)(gi) = 0 and cl(gt)(gi) = cl(gt)(si)
• For each β ∈ Σ we have that if gi |= ¬en(β) and si |= en(β) (β became

enabled by the execution of αi), or β = αi and si |= en(β) (although
αi = β was executed, it is enabled immediately again), then cl(β)(si) is a
random non-negative value which is chosen between lβ and uβ according
to the uniform distribution. Or if gi |= en(β) and si |= ¬en(β), then
cl(β)(si) = 0. That is, when a transition becomes disabled, its clock is
set to zero. Otherwise, cl(β)(gi) = cl(β)(si).

• For β  = αi such that gi |= en(β) we have that cl(β)(gi) > 0. The reason
is that the probability of two events being triggered at the same time1 is
0 from probability point of view. Detailed discussion can be seen in [11].

1 Here a pair of synchronized transition is considered as one transition.
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Definition 6. A path is a finite sequence of transitions σ = α1α2α3 . . .. A path
σ is consistent with an execution ρ if σ is obtained by removing all the state
components of ρ.

3.2 Calculating Participating Transitions

Since transitions may occur several times on a path, we refer to the occurrences
of transitions. So we either rename or number different repeated occurrences
of transitions to be different. In fact, we need to look not only on the tran-
sitions that occur on the path, but also on those that become enabled (and
disabled).

As a preliminary step for the calculation performed in the next section, we
need to compute the transitions that are enabled given a path σ (but not nec-
essarily executed). Assume that the transitions are executed according to the
order in σ. Then consider the states of the form gi, where the transition α is
fired. We can ignore now the timing considerations, thus also the states of the
form sj (that are the same as the gi states). The states g1, . . . , gn are easily
calculated, as V (gi) = Fαi(V (gi−1)). Moreover, it is easy to calculate whether
gi |= en(β) holds for 0 ≤ i ≤ n.

Definition 7. The enabledness period of an occurrence of a transition αj, is a
maximal interval, where it is enabled. That is, each such interval is bounded by
states gi and gj such that for each i ≤ k ≤ j, gk |= en(αj). Furthermore, gi and
gj are maximal in the sense that these conditions do not hold for the interval
gi−1 to gj (if i > 0) nor for the interval gi to gj+1 (if i < n).

Thus, the transitions participating in a path σ are those that have a nonempty
enabledness period.

3.3 A Partial Order Between Path Events

It is commonly argued that specifying a given sequence of events is less natural
than specifying a partial order between them. In particular, some events are
local to their separate processes. In these cases, it is often the case that they can
occur in either order. Given time constraints, it is possible that such an order
exists, or that the occurrence of two local independent transitions cannot appear
in the order specified by a given sequence.

Definition 8. We add to the definition of a transition system a set of processes
P . Furthermore, we have a function p : Σ → 2P that describes to each transition
the set of processes in which they are involved. Thus, we redefine a transition
system as T = 〈V, Σ, P, p〉.

Definition 9. For a transition system with a set of transitions Σ, we have that
α, β ∈ Σ are independent iff p(α) ∩ p(β) = ∅. That is, if α and β are associated
with disjoint processes. We denote the dependency relation over Σ by D ⊆ Σ×Σ.
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Definition 10. Let σ be a path, i.e., a sequence of occurrences of transitions.
Then <σ, the essential partial order between occurrences from σ is defined for
α, β in σ as follows: α <σ β iff α appears in σ before β and αDβ.

We can now define the partial order <∗
σ between occurrences on a path σ as the

reflexive and transitive closure of <σ.

3.4 An Example System

In Figure 1, a system is composed of three processes, each of which is repre-
sented by a subsystem. Process 1 has four transitions a, b, c, d, process 2 has one
transition g and process has one transitions h. The transitions of the different
subsystems are being put together into the set of transitions T . The variables
V = {s, v, w} representing the “program counters” of the different processes are
used to control the enabledness of these transitions. The initial state of the sys-
tem has the assignment s = 1, v = 1 and w = 1. The bounds for every transition
are noted in the figure. The density functions of transitions in this system are
fa = fg = fh = 1

4 , fb = fc = 1
3 and fd = 1

2 .

a

c d

h

g

[2, 6]

[3, 7]
[2, 5]

[2, 4][1, 4]
[1, 5]

b

s = 5

w = 1

v = 1 v = 2

w = 2

s = 1

s = 4s = 2

s = 3

Fig. 1. The example system

It is quite easy to model various kinds of concurrency constructs using transi-
tion systems [15], for example, synchronous communication can be represented
as a transition that involves two processes (hence affecting program counters of
both processes) assigning values from the sending variables to the receiving one.

4 The Probability of a Path

4.1 Timing Relations Along a Path

As per Definition 6, a path ρ is a sequence of transitions α1α2 . . . αn. The corre-
sponding execution is s0g1α1s1g2α2s2g3 . . . sn−1gnαnsn. The transition αi (1 ≤
i ≤ n) has the lower bound li and the upper bound ui. The path is executed
from state s0 at global time 0, which is represented as x0. Let xi be cl(gt)(gi)
or, equivalently, cl(gt)(si), i.e., the value of the global clock, when the transition
αi is fired. So we have a sequence of global time points x0x1 . . . xn. We obtain
the relation among these time points:

x0 < x1 < · · · < xn. (1)
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For a transition αj that becomes enabled at xi and is triggered at xj , the
duration of its enabledness, which is decided by the initial value of cl(αj)(si) at
xi, satisfies the formula:

lj ≤ xj − xi ≤ uj . (2)

Now let us consider an occurrence of a transition α′ that does not appear in
the given path but is first enabled at si, while disabled at sj (0 ≤ i < j ≤ n)
or remains enabled after sn. In the latter case, α′ is said to be disabled by the
end of path at xn. Thus we need not distinguish these two cases. Let xi and xj

be the global time points with respect to si and sj respectively. cl(α′)(si) is the
initial value of the clock when α′ becomes enabled. Let xα′ = xi + cl(α′)(si).
Then xα′ satisfies the following formulae:

lα′ ≤ xα′ − xi ≤ uα′ , (3)
xj < xα′ . (4)

Obviously, xα′ − xi, the initial clock value of α′, is bounded by the lower
bound and the upper bound of α′. The formula (4) must hold because otherwise
α′ would have been triggered before αj is triggered and would have appeared in
the path. All of the occurrences of transitions that are enabled at some states
and disabled at some later states form the set {α′

1, α
′
2, . . . , α

′
m}. Every xi or xα′

k

is the value of a random variable Xi or X ′
k.

Consider for example a path ρ = ag of the system in Figure 1. At time x0,
there are four enabled transitions a, b, g and h. According to ρ, a is fired earlier
than others at time x1. At this point, b is disabled, while g and h are continuously
enabled. Also, c becomes enabled at x1. To make it clear, we use xa to replace
x1 and xg to replace x2. Therefore, we obtain constraints

1 ≤ xa ≤ 5 (formula (2))
2 ≤ xb ≤ 5 (formula (3))
xa < xb. (formula (4))

At time x2 after g is fired, both h and c are disabled by the end of the path. We
obtain

2 ≤ xg ≤ 6 (formula (2))
3 ≤ xh ≤ 7 (formula (3))
xa + 1 ≤ xc ≤ xa + 4 (formula (3))
xa < xg (formula (1))
xg < xh (formula (4))
xg < xc. (formula (4))

The final constraint for the path is as follows:

(1 ≤ xa ≤ 5) ∧ (2 ≤ xg ≤ 6) ∧ (3 ≤ xh ≤ 7) ∧ (2 ≤ xb ≤ 5)∧
(xa + 1 ≤ xc ≤ xa + 4) ∧ (xa < xb) ∧ (xa < xg) ∧ (xg < xh) ∧ (xg < xc).
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4.2 Computing the Probability of a Path

For a path in which n transitions are taken and m transitions are not taken but
have been enabled for a period of time, calculating the probability that the path
is executed will involve n + m independent random variables Y1, . . . , Yn, Y ′

1 , . . . ,
Y ′

m. Each transition has a corresponding random variable whose value is the
initial value of the clock of the transition. The fact that a transition is enabled
after another does not make their corresponding random variable dependent on
each other because on every execution of a path, the initial value of the clock
of a transition is chosen independently according to its probability distribution.
Any transitions that are never enabled along the path do not compete with
the transitions in the path for execution. Thus they do not contribute to the
probability and need not be considered in the calculation of the probability.

The probability distribution of the path is the joint distribution of Y1, . . . , Yn,
Y ′

1 , . . . , Y ′
m. Let fi (1 ≤ i ≤ n) and f ′

k (1 ≤ k ≤ m) be the density function of Yi

and Y ′
k respectively. Let li and ui be the lower bound and the upper bound of Yi

and l′k and u′
k be the lower bound and the upper bound of Y ′

k. Thus, fi = 1
ui−li

and f ′
k = 1

u′
k−l′k

. To calculate the probability, we use variable transformation
from {Y1, . . . , Yn, Y ′

1 , . . . , Y ′
m} to {Xi|1 ≤ i ≤ n} ∪ {X ′

k|1 ≤ k ≤ m}, because
the time constraint is defined on the latter set of variables. Let yj and y′

k be
the value of the variable Yj and Y ′

k. We have Yj = Xj − Xi according to the
formula (2), Y ′

k = X ′
k−Xi according to the formula (3) and X0 = 0. The density

function f(x1, . . . , xn, x′
1, . . . , x

′
m) = f(y1, . . . , yn, y′

1, . . . , y
′
m)|J |.

J =

∂y1/∂x1 · · · ∂y1/∂xn ∂y1/∂x′
1 · · · ∂y1/∂x′

m

...
...

...
...

...
...

∂yn/∂x1 · · · ∂yn/∂xn ∂yn/∂x′
1 · · · ∂yn/∂x′

m

∂y′
1/∂x1 · · · ∂y′

1/∂xn ∂y′
1/∂x′

1 · · · ∂y′
1/∂x′

m

...
...

...
...

...
...

∂y′
m/∂x1 · · · ∂y′

m/∂xn ∂y′
m/∂x′

1 · · · ∂y′
m/∂x′

m

Since ∂yj/∂xj = 1, ∂yj/∂xi = 0 for every i > j, ∂yj/∂x′
k = 0 for every 1 ≤

k ≤ m, ∂y′
k/∂x′

k = 1, and ∂y′
k/∂x′

i = 0 for every i > k, J is a lower triangular
square matrix and every diagonal element is 1. Thus the determinant of Jacobian
matrix is 1.

f(x1, . . . , xn, x′
1, . . . , x

′
m) = f(y1, . . . , yn, y′

1, . . . , y
′
m) =

n

i=1

fi ·
m

k=1

f ′
k .

Now we calculate the probability over X1, . . . , Xn, X ′
1, . . . , X

′
m.

The formulae (1)-(4) characterize the constraint for a path. The constraint
defines a region B in the (n+m)-dimensional space. Let P [ρ] = P [α1α2 . . . αn]
be the probability of the path ρ. P [ρ] is calculated by

P [ρ] = · · ·
(X1,...,Xn,X′

1,...,X′
m)∈B

f1 · · · fnf ′
1 · · · f ′

m dx′
m · · · dx′

1dxn · · · dx1. (5)
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The formula is calculated from innermost integral to outermost integral. Let
Z = {X1, . . . , Xn, X ′

1, . . . , X
′
m}. The integral range of variable zj ∈ Z might

depend on the range of zi ∈ Z for i < j. However, a technical difficulty exists in
the above formula: the dependency relation is different in the different parts of
range of zi. In our example,

P [ag] =
5

1

6

max1

7

max2

5

max3

xa+4

max4

1
576

dxc dxb dxh dxg dxa,

where max1 = max{2, xa}, max2 = max{3, xg}, max3 = max{2, xa}, max4 =
max{xa + 1, xg} and 1

576 = 1
4 ×

1
3 ×

1
4 ×

1
4 ×

1
3 . These max functions are deduced

from the constraints of the path ag. At different parts of region, the functions
obtain different values.

Therefore, the region needs to be split into a set of disjoint blocks, in each of
which the dependence relation is fixed. Then the integration is performed over
every block and the results are summed up. The region-splitting can be done
using the Fourier-Motzkin elimination method [18]. The constraint of path ag is
split into eight disjoint regions:

1 ≤ xa < 2 ∧ 2 ≤ xg < 1+xa ∧ 3 ≤ xh ≤ 7 ∧ 2 ≤ xb ≤ 5 ∧ 1+xa ≤ xc ≤ 4+xa

1 ≤ xa < 2 ∧ 1 + xa ≤ xg < 3 ∧ 3 ≤ xh ≤ 7 ∧ 2 ≤ xb ≤ 5 ∧ xg < xc ≤ 4 + xa

1 ≤ xa < 2 ∧ 3 ≤ xg < 4 + xa ∧ xg < xh ≤ 7 ∧ 2 ≤ xb ≤ 5 ∧ xg < xc ≤ 4 + xa

2 < xa < 3 ∧ xa < xg < 3 ∧ 3 ≤ xh ≤ 7 ∧ xa < xb ≤ 5 ∧ 1 + xa ≤ xc ≤ 4 + xa

2 < xa < 3 ∧ 3 ≤ xg < 1 + xa ∧ xg < xh ≤ 7 ∧ xa < xb ≤ 5 ∧ 1 + xa ≤ xc ≤ 4 + xa

2 < xa < 3 ∧ 1 + xa ≤ xg ≤ 6 ∧ xg < xh ≤ 7 ∧ xa < xb ≤ 5 ∧ xg < xc ≤ 4 + xa

3 ≤ xa < 5 ∧ xa <xg <1+xa ∧ xg <xh ≤7 ∧ xa <xb ≤5 ∧ 1+xa ≤xc ≤4+xa

3 ≤ xa < 5 ∧ 1 + xa ≤ xg ≤ 6 ∧ xg < xh ≤ 7 ∧ xa < xb ≤ 5 ∧ xg < xc ≤ 4 + xa.

Each region describes the integral range for every variable. The following are
these eight integrals:

∫ 2

1

(∫ xa+1

2

(∫ 7

3

( ∫ 5

2

( ∫ xa+4

xa+1

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 2

1

(∫ 3

xa+1

(∫ 7

3

( ∫ 5

2

( ∫ xa+4

xg

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 2

1

(∫ xa+4

3

(∫ 7

xg

(∫ 5

2

( ∫ xa+4

xg

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 3

2

(∫ 3

xa

(∫ 7

3

( ∫ 5

xa

( ∫ xa+4

xa+1

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 3

2

(∫ xa+1

3

(∫ 7

xg

(∫ 5

xa

( ∫ xa+4

xa+1

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa
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∫ 3

2

(∫ 6

xa+1

(∫ 7

xg

(∫ 5

xa

( ∫ xa+4

xg

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 5

3

(∫ xa+1

xa

(∫ 7

xg

(∫ 5

xa

( ∫ xa+4

xa+1

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa

∫ 5

3

(∫ 6

xa+1

(∫ 7

xg

(∫ 5

xa

( ∫ xa+4

xg

1
576

dxc

)
dxb

)
dxh

)
dxg

)
dxa.

P [ag] is 1489
5760 , the sum of these eight integrals2.

4.3 The Complexity of the Computation

The computation of the integration over the range defined by a block has linear
complexity, because there are no cyclic references, the density functions do not
contain integration variables and all of integration bounds are linear. The general

complexity of the Fourier-Motzkin (FM) elimination method is O((m
2 )

2n

), where
m is the number of inequalities and n is the number of variables. In the constraint
of a path, any linear inequality has at most two variables and every coefficient
belongs to the set {−1, 0, 1}. Now we give a brief estimation of the complexity
of the FM method for this special case. The FM method has n recursive steps,
each of which deals with one variable. Each step generate some new inequalities.
The number of new inequalities is maximal when m

2 inequalities have a positive
coefficient of the variable and other m

2 inequalities have a negative coefficient.
The maximal number is m2

4 . After n steps, we gain the general complexity. Since
we have (n + m) transitions and at most three inequalities for each transition
(which can be easily deduced from the formulae (1)-(4)), and there are at most
two variables per inequality, there are at most 6(n + m) coefficients in all the
inequalities. To produce the maximal number of new inequalities, each variable
can appear in 6 inequalities. Three of them have a positive coefficient and other
three have a negative coefficient. Therefore, we obtain (3 × 3)n+m new inequali-
ties in the end. Then the complexity is O(9n+m) in our case. Each new inequality
means a region is split, which means we may get exponentially increased num-
ber of integral regions. However, many of them are redundant. In practice, we
expect only a small number of split regions. For example, for path ag, we obtain
8 regions, far less than 95.

On the other hand, the calculation of the formula (5) can be seen as the
problem to calculate the volume of the region defined by the constraint because
the joint density function is a constant. Since the constraints contain only con-
junction and linear inequalities, the region is convex linear. The computational
complexity of computing the volume of a convex body defined by linear inequal-
ities is #P -hard [8]. But approximation algorithms for computing volume can
be polynomial. The fastest algorithm is O∗(n4) [13], where n is the dimension of

2 These integrals were calculated using Mathematica.
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the body. We also expect to find (but have not found yet) some helpful results
for our special case to accelerate computing volumes.

4.4 Simplification for Exponential Distribution

We have already mentioned in the first section that the calculation could be
simple if the delay of each transition obeys exponential distribution, since the
system is Markovian. Now we give a short description how exponential distri-
bution simplifies calculation. An exponential distribution is defined on interval
[0,∞] with rate λ and density function λ · e−λ·x. At first, the formula (2) is
changed to 0 ≤ xj − xi < ∞, which is simplified to xi ≤ xj < ∞. Because of
xj−1 < xj , the formula (2) is simplified to xj−1 < xj < ∞ further, which makes
the formula (1) is redundant and removed. Similarly, the formula (3) is simplified
to xi ≤ xα′ < ∞. Due to xi < xj , this formula and the formula (4) are merged
to xj < xα′ < ∞. For example, consider all transitions in Figure 1 are following
exponential distribution. The density functions for transitions a, b, c, d, g and h
are λa ·e−λa·xa , λb ·e−λb·xb , λc ·e−λc·xc , λd ·e−λd·xd , λg ·e−λg·xg and λh ·e−λh·xh .
The constraint for path ag is (xa = x1 and xg = x2)

(0 ≤ xa < ∞) ∧ (xa < xg < ∞) ∧ (xg < xh < ∞) ∧ (xa < xb < ∞) ∧ (xg < xc < ∞).

After simplifying the formulae (1)-(4), each variable xβ with respect to transition
β in time constraint is bounded by an inequality of the form xγ < xβ < ∞, where
xγ is the time point at which the (j − 1)th transition in the path is triggered
if β is the jth transition (xγ = x0 if β is the first transition), or at which β is
disabled if β does not appear in the path. Moreover, this constraint need not be
split into smaller integral blocks.

The integration over this constraint can be done inductively as follows. For
all transitions that do not appear in the path, their lower integral bounds are
the time points at which they become disabled. Let β be such a transition with
constraint xγ < xβ < ∞. The integration over xβ is

∞

xγ

λβ · e−λβ·xβ dxβ = e−λγ ·xγ . (6)

For a path with n transitions, we divide the transitions not appearing in the
path into n groups such that the transitions in group Gi is disabled by the ith
transition. Integration over variables corresponding to transitions in a non-empty
group Gi where each transition βk ∈ Gi has rate λi,k produces e−( λi,k)·xi by
applying the formula (6) for each βk and multiply their results.

After eliminating all variables corresponding to the transitions not triggered
from integral, we need to calculate the integral over variables corresponding to
the transitions in the path. Now the integral for such a variable xj is of the form

∞

xj−1

λj · e−(λj+ λj,k)·xj dxj .

We calculate the integration from variable xn to x1 recursively. It is easy to prove
by induction that after we calculate the integration over xj+1, the integral over
xj is as follows:
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∞

xj−1

λj ·
n

i=j+1

λi

λi + λi,k
· e−( n

i=j(λi+ λi,k))·xj dxj .

Finally, the result of the integration after variable x1 is below:

n

j=1

λj
n
i=j(λi + λi,k)

. (7)

For example, the probability of path ag is calculated as follows:

∞

0
λa · e−λa·xa

∞

xa

λg · e−λg·xg

∞

xg

λh · e−λh·xh

∞

xa

λb · e−λb·xb

∞

xg

λc · e−λc·xcdxc dxb dxh dxg dxa =

∞

0
λa · e−(λa+λb)·xa(

∞

xa

λg · e−(λg+λh+λc)·xadxg)dxa =

λg

λg + λh + λc
· λa

λa + λb + λg + λh + λc
.

The formula (7) shows that for a system where all transition delays obey
exponential distribution, we do not need to calculate the integration for the
probability of a path, instead to calculate the probability directly over all rates.

5 Optimizing the Calculation for a Partial Order

A partial order represents a group of equivalent paths that has the same essential
partial order. Given a path and an independence relation between its transitions
(representing pairs of transitions that can concurrently overlap), one can gen-
erate the partial order relation <∗

σ, see Section 3.3. A simple way to calculate
the probability of executing a partial order is to sum up the probabilities of all
equivalent paths. But this calculation can be optimized. For example, consider
the system in Section 3.4. The partial order 〈a, g〉 containing a and g and no
order relation between them represents two paths: ag and ga. The constraint of
ga is

(2 ≤ xg ≤ 6) ∧ (1 ≤ xa ≤ 5) ∧ (xg < xa)∧
(2 ≤ xb ≤ 5) ∧ (3 ≤ xh ≤ 7) ∧ (xa < xb) ∧ (xa ≤ xh).

It is split into two integral regions. So in total, there are ten integrals to calculate
the probability of the partial order3. On this partial order, a could be triggered
earlier or later than g and thus we do not have relation xa < xg or xa > xg. The
key constraint for the partial order is

(xa < xb) ∧ (xa < xh) ∧ (xg < xh) ∧ (xg < xc).

3 The FM method cannot handle disjunction of two sets of inequalities.
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The conjunction of this constraint and the basic constraint

(1 ≤ xa ≤ 5) ∧ (2 ≤ xg ≤ 6) ∧ (3 ≤ xh ≤ 7) ∧ (2 ≤ xb ≤ 5) ∧ (xa + 1 ≤ xc ≤ xa + 4)

is split into nine blocks. Thus, it is possible to give heuristics for optimizing
the calculation of the probability of a partial order. (It is possible to merge two
adjacent blocks into one when they are generated from different paths. Indeed,
there are such two blocks when we split the constraints for paths ag and ga
separately. But it wastes time to generate them first and merge them later. It is
better to generate the merged block directly from a simple constraint.)

The key idea for optimizing probability calculation for a partial order is that
we remove from the time constraint of the partial ordering relations between any
pair of transitions that can be fired concurrently. Hence the time constraint of
the partial order only describes the necessary relations that guarantee the partial
order. For instance, the relations xa < xg and xg < xa between transitions a and
g in the above example are not necessary for the partial order 〈a, g〉 since either
a or g can be triggered first. The time constraint for a partial order cannot be
constructed simply as the disjunction of time constraints for all linearizations
of the partial order with removing the unnecessary relations among concurrent
transitions. The reason is that other relations in a time constraint of a lineariza-
tion may depend on the ordering relations among concurrent transitions on this
linearization.

The time relation defined by formulae (1)-(4) gives time constraint for a linear
sequence. To allow maximum concurrency, we need to release the relation so that
it can describe a partial order. Indeed, if two transitions do not depend on each
other, either one can be fired earlier than the other. Thus we remove inequality
between their execution time points. We need to modify formulae (1) and (2) to
reflect this change. For two transitions α and β such that the firing of α enables
β, we obtain lβ < xβ − xα < uβ . In a general case that β becomes enabled only
after all transitions α1, . . . , αn are fired, i.e., β depends on α1, . . . , αn,

lβ < xβ − max{xα1 , . . . , xαn} < uβ. (8)

Particularly, if n = 0, we have lβ < xβ < uβ. The formula (8) for every transition
can be gained statically from the partial order.

Let ρi and ρj be projected path of the partial order on Process i and j. Let
xni (xnj ) be the end time point on ρi (ρj) when the last transition on ρi (ρj)
is triggered. For any transition α′ belonging to Process i and remaining enabled
after xni (including the newly enabled transitions at xni), we have the following
relation in order to ensure α′ cannot be triggered earlier than all transitions
appearing on ρj:

xα′ > xnj , (9)

where xα′ is the same time point as the one in formula (4).
However, the optimization is complicated when handling a joint transition

belonging to two processes. Figure 2 depicts a system consisting of two processes.
For brevity, only labels of transitions are shown. Transitions c is a joint transition.
Consider the partial order a → b, d → g. The possible paths represented by the
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c
a d

b g
[2, 5] [1, 5]

[2, 6] [2, 6]
c

[1, 4] [2, 4]

Fig. 2. A system example

partial order are adbg, adgb, dabg, dagb, abdg and dgab. Let xa, xb, xc, xd, xg be
the variables corresponding to a, b, c, d, g respectively. On the paths abdg and
dgab, c is not enabled because during the execution of these paths, the system
never reaches a state containing the two source location of c in both processes.
The key time constraint to describe this situation is

xa > xg ∨ xd > xb. (10)

On paths adbg, adgb, dabg and dagb, c is first enabled at time point max{xa, xd}
and disabled at min{xb, xg}. The key time constraint is

(xa < xg ∧ xd < xb) ∧ (xc > min{xb, xg} ∧ lc < xc − max{xa, xd} < uc), (11)

where lc, uc are the lower and the upper bound of c. However, since

(xa > xg ∨ xd > xb) ∧ (xc > min{xb, xg} ∧ lc < xc − max{xa, xd} < uc)

is simplified to

(xa > xg ∨ xd > xb) ∧ (lc < xc − max{xa, xd} < uc), (12)

the integration on xc is 1 when we integrate on the above formula if c is never
enabled, which means the integration result on formula (12) is the same as that
on formula (10). Therefore, from the integration point of view, we can use the
following formula to describe the constraint for c, no matter c is enabled or not:

xc > min{xb, xg} ∧ lc < xc − max{xa, xd} < uc, (13)

Note that xa and xd could be x0, and xb and xg could be end time points on
each processes.

Now the time constraint for a partial order is defined by the formulae (8), (9),
(3–4) (for local transitions) and (13) (for joint transitions). We need to find all
occurrences of joint transitions that could be enabled without being executed.
One way is to generate all possible occurrences statically. But some occurrences
might be prohibited by time constraints or enabling conditions. Another way
is to execute all paths represented by the partial order to collect occurrences.
Our experience shows that the optimization effect is significant when the partial
order allows much concurrency. For example, in the partial order a → c, d → c,
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there are two equivalent paths adc and dac. The number of regions of the path
adc after split is 2 and the number for the path dac is 1. After optimization being
applied, the total number of regions is 3, which equals to the sum of regions of
the two paths. However, for the partial order a → b, d → g, the sum of regions
of the six paths is 38, while the number after optimization is 19, only a half of
the sum.

6 Discussion and Conclusion

When performing unit testing of code, we often attempt to force the execution
of a suspicious behavior. We can start by calculating some initial values for this
behavior, e.g., by calculating the path condition [9]. However, due to concur-
rency, repeating the exact same behavior is not always guaranteed. A tester may
instrument the code in such a way that the selected behavior is forced. However,
such instrumentation alter the code, in particular, it may change the timing
and consequently the interaction with external devices, which may be part of
tested behavior. The alternative that we suggested in this paper, is to calculate
the probability of the behavior to occur in order to obtain a tough estimate of
expected number of repetitions we ought to perform the testing. Meaning that
if the probability we calculated is p, then we should repeat our experiment O( 1

p )
times. If the desired test case hasn’t happened, it shows that some information
which we use to compute the probability is not accurate, such as probability
distribution, or the time intervals of transitions. For example, although the time
interval to execute some transition is [2, 3], it actually, under the given testing
parameters, be [1, 4]. This is also helpful for a tester to understand the system
more accurately.

Our approach is also useful for optimizing test suites. One aspect is that we
always want to run those test cases that have high probability first in order to
save on time and resources. Another aspect is that given a choice of test cases,
we may use the probability calculation in order to select the more likely cases.

Although we use uniform distribution in the example to demonstrate our
methodology, the general formula for computing the probabilities holds for ar-
bitrary distributions. This was shown for exponential distribution, because of
the fact that the time constraint defined by the formulae (1)-(4) and the Ja-
cobian for the random variable transformation are independent of probability
distributions. A potential problem for any other distribution than uniform dis-
tribution and exponential distribution is that its density function contains the
integration variable so that the calculation of an (n+m)-fold multiple integral on
this kind of distributions could be much harder than the calculation on uniform
distribution.

We also showed that our methodology can be optimized for a partial order.
However, due to the complexity introduced by joint transitions, the effect of opti-
mization can be counteracted by extra computation for handling this complexity,
in particular, when there are many occurrences of joint transitions involved in
the probability calculation.
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Abstract. Calculating the precondition of a particular partial-ordered
set of events is often necessary in software testing, such as for generating
test cases. Things become even more complicated when the execution
time is added to the picture. If the execution time of two processes along
a partial order does not match each other, the precondition of the partial
order is false and then the partial order is identified as time unbalanced
partial order. We present its formal definition and an algorithm to distin-
guish it. Then we suggest a method to fill the gap of the execution time
of participating processes. This method can also be adopted to simplify
the calculation of the minimal and maximal bounds of a time parameter.

1 Introduction

Software testing has been applied broadly as a common technique for enhancing
software quality. A general way to test software is to monitor system outputs by
providing some initial inputs or path conditions (the necessary relation between
program variables for executing the related path). The initial inputs or conditions
can be designed according to a set of test criteria, such as branch coverage, either
manually or automatically. In many cases the initial condition can be calculated
along a specified path backwards. The latter scenario often occurs when testers
want to focus on a suspicious path.

Specifying a path and calculating its precondition in an untimed system has
been implemented in Path Exploration Tool (PET) [5]. The methodology to
compute the precondition of a specified path in a timed system has been pro-
posed in [3] and implemented as an extension to PET. Time constraints in timed
systems make the calculation of precondition in such a system much more com-
plicated than in an untimed system.

Moreover, a paradoxical problem is often generated by time constraints when
testers specify a path in a timed system. In [3], a timed system is modeled by a
transition system, which is translated into extended timed automata. Generally
speaking, a path in a timed system represented by timed automata is composed
of a sequence of actions and time progress transitions. However, an untimed
system only has actions, no time progress transitions, which means a process in
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an untimed system can stay at any location for any long time no matter how
long other processes has been running. This characteristics benefits testers such
that they can specify any length of a path without worrying about obtaining an
unexpected precondition. However, they must be careful when specifying a path
in a timed system. A problem occurs with respect to time progress transitions. If
the execution time of all actions belonging to one process in the path is shorter
than that of actions belonging to another process, then the path condition could
be false. The reason is that the first process is required by time constraints
to execute additional actions on top of those appearing in the path after it
has finished executing its actions in the path but before the second process
has finished execution. The false path precondition could confuse testers in the
sense that they would believe that some sequence of actions cannot be executed
and draw a wrong conclusion about the path. In addition, this problem can be
extended to partial order naturally.

In the rest of this paper, we briefly introduce transition systems, extended
timed automata and calculating partial order precondition in Section 2 to provide
the necessary background knowledge. Then in Section 3 we use an example
to explain the problem and afterwards, the formal description is given by the
definition of time unbalanced partial order. In Section 4, a method is proposed to
remedy this problem and a kind of its application is identified, which is helpful
for testers in some circumstances. Finally Section 5 concludes this paper.

2 Modelling Timed Systems

A timed system could be a physical system, such as the train-gate controller (e.g.,
[1]), or a software system, such as a communication protocol. In this paper, we
only consider the latter.

2.1 Transition System

A transition system (TS) contains a set of concurrent processes. A process is
represented by a directed graph G = 〈V, E〉, where V is the set of nodes and
E is the set of directed edges. A node is a control location and an edge is a
transition starting at its source location and pointing to its target location. An
edge, which is shown in Figure 1, is composed of an enabling condition en and
a transformation t. Each of them is associated with a pair of time bounds. Let
l and u be the lower bound and the upper bound of the enabling condition and
L and U be the lower bound and the upper bound of the transformation.

en → t

[l, u], [L, U ]

Fig. 1. The edge
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When the process resides at the source location of a transition and its enabling
condition is evaluated to true continuously for more than l time, the transforma-
tion has a chance to be triggered. The transformation must be started before the
condition holds continuously for u time unless another transition is executed and
falsifies the enabling condition before the duration for which the enabling con-
dition holds continuously reaches u time. Once the transformation is triggered,
it must be finished after L time and before U time.

2.2 Extended Timed Automata

An extended timed automaton (ETA) is a timed automaton [1] enhanced with
program variables. Its formal definition is a tuple 〈V,C,Ψ,Φ,S,S0,Σ,T ,E〉 where

– V is a finite set of program variables.
– C is a finite set of dense time clocks.
– Ψ is a finite set of assertions defined over V .
– Φ is a finite set of assertions over clocks. Every element φ ∈ Φ is conjunction

of constraints of the form x rl c, where x is a clock, rl is a relation from
{<, >,≥,≤, =} and c is a constant.

– S is a finite set of states. Each state s ∈ S has a state invariant I(s) =
I(s)Ψ ∧ I(s)Φ, where I(s)Ψ ∈ Ψ and I(s)Φ ∈ Φ.

– S0 ⊆ S is a set of initial states.
– Σ is a finite set of labels.
– T is a finite set of transformations over V . A transformation in T represents

a set of multiple assignments. Each assignment assigns a new value to a
program variable.

– E is a finite set of edges (switches). An edge 〈s, σ, ψ ∧ φ, t, 2c, s′〉 starts at
source state s and points to target state s′ and has multiple labels σ ⊆ Σ,
an enabling condition ψ ∧ φ (ψ ∈ Ψ, φ ∈ Φ), a transformation t ∈ T and a
set of clocks 2c ⊆ C reset by the edge.

Multiple labels in an edge allow the edge to be synchronized with multiple
edges. The definition of an execution of ETAs is similar to that of timed au-
tomata. Thus it is omitted here and we only consider nonzeno executions.

2.3 Translation from TS to ETAs

Every transition system will be translated into extended timed automata in the
following way [3]. Any location in a process is said to be the neighborhood of
the transitions that must start at that location. The enabledness of each transi-
tion depends on the location counter, as well as an assertion over the program
variables. For a neighborhood with n transitions, we construct 2n enabledness
states, one for each combination of enabledness conditions truth value. An in-
ternal edge from one such state to another corresponds to such a combination
(through progress in other processes). Each such transition αj has its own local
clock xj . Different transitions may have the same local clocks, if they do not
participate in the same process or the same neighborhood. An edge that corre-
sponds to such an assertion becoming true also resets xj (xj := 0) for measuring
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the amount of time that the transition is enabled. If an edge corresponds also to
some assertion becoming false, we do not reset the local clock for that transition.
On a given state where a transition αj is enabled, we have the conjunct xj < uj

as part of the state invariant, disallowing a transition to stay in that state more
than its upper limit uj .

We also have an additional intermediate state per each transition in the neigh-
borhood, from which the transformation associated with the selected transition
is performed. From any enabledness state, as described in the previous para-
graph, in which the enabledness cj of αj holds, we add a decision edge with
the condition xj ≥ lj , allowing the execution of αj only after at least lj (the
lower bound for αj) to be continuously enabled since it became enabled. On that
edge, we also reset the clock xj to measure now the time it takes to execute the
transformation. On the target state for that edge, i.e., the intermediate state,
we put the condition xj < Uj , not allowing the transformation to be delayed
more than Uj time, and add a transformation edge labeled with xj ≥ Lj to any
of the enabledness states representing the following location. Again, this is done
according to the above construction, there can be multiple such states, for the
successor neighborhood, and we need to reset the appropriate clocks.

2.4 Generating DAGs

After we model a timed system by a transition system and translate it into
extended timed automata, the product of these automata is generated in a stan-
dard way as in [1]. We assume any transition can reference at most one shared
variables. A shared variable cannot be accessed synchronously by the trans-
formations of two or more transitions. When multiple transitions compete each
other to access a shared variable, only one access is granted and other transitions
are blocked. These blocked transitions are activated after the granted access is
finished and their enabling conditions are evaluated from beginning. The inter-
nal edges are used to synchronize transitions on accessing shared variables and
therefore are merged to the decision edges and the transformation edges in the
product. When a tester specifies a sequence of transitions that a system needs to
execute orderly, he specifies a single path; however, due to independence in the
order of concurrent events, a partial order [7, 8], which describes the essential ex-
ecution order between transitions, is more appropriate, as transitions belonging
to the different processes and are not competing with each other for accessing a
mutual variable are not necessarily ordered as in the given sequence. This partial
order is represented as a formula over a finite set of actions Act = Ac∪Af , where
the actions Ac represent the decision edges, and the actions Af represent the
transformation edges. Thus, a transition α is split into two components, αc ∈ Ac

and αf ∈ Af . The essential order imposes sequencing all the actions in the same
process, and pairs of actions that use or set a shared variable. In the latter case,
the decision edge βc of the latter transition succeed the transformation edge
αf of the earlier transition. However, other transitions can interleave in various
ways (e.g., αc ≺ γc ≺ γf ≺ αf ). This order relation ≺ corresponds to a partial
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(irreflexive, asymmetric, transitive) order over Act . Let A≺ be an automaton
that recognizes the untimed language of words that are linearizations of ≺.

We label the edges in the product according to Act and then synchronize the
partial order automaton with the product automaton to form a directed acyclic
graph (DAG). The synchronization is done as commonly labeled transitions of
different processes are executed together. A path from the root node to a leaf
node in the DAG is one of equivalent paths represented by the partial order. In
an untimed systems, the precondition of executing any path represented by the
partial order is the same. When adding time, some paths are ruled out by the
time constraints.

2.5 Calculating Path Precondition

Now calculating the partial order precondition is performed on the DAG. Each
leaf node is associated with a first order predicate ϕ0 = true and a DBM [4] D0,
which is used to represent a time zone. A DBM is a (m + 1) × (m + 1) matrix1

where m is the number of local clocks of all processes. Each element Di,j of a
DBM D is an upper bound of the difference of two clocks xi and xj , i.e.,

xi − xj ≤ Di,j . (1)

We use x1, · · · , xm to represent local clocks. x0 is a special clock whose value is
always 0. Therefore, Di,0 (i > 0), the upper bound of xi−x0, is the upper bound
of clock xi; D0,j (j > 0), the upper bound of x0 − xj , is the negative form of
the lower bound of clock xj . D0 represents the time zone after execution of the
last transition of any path. The entry D0

i,j is set to (0,≤) for i = 0 ∨ i = j, or
(∞, <) otherwise, since we do not know the exact value of each clock before paths
are executed. The exact clock value ranges can be computed during backward
calculation. Note that we need to distinguish non-strict inequalities from strict
inequalities in the formula (1).

We now progress backwards and “relativise” out path condition over the edge
we traverse as follows: since each edge has a transformation v := e and an asser-
tion en as its enabling condition over program variables, starting at leaf nodes, ϕ
(which is ϕ0) is updated to ϕ[v/e] ∧ en (ϕ[v/e] means replacing each occurrence
of v in ϕ by e) each time when we follow an edge backwards from the target node
s to the source node s′. At the same time, D (which is D0) is updated to D′ for
the backward reachability analysis, according to the following formula [9]

D′ = ((([λ := 0]D) ∧ I(s′)c ∧ ψc) ⇓) ∧ I(s′)c,

where I(s′)c is the assertion over clocks in the state invariant of the source node,
ψc is the assertion over clocks attached to the edge, λ is the set of clocks reset by
the edge, “∧” is the intersection of two DBMs, “[λ := 0]D” is the reset operation
on DBMs and “⇓” is the time predecessor operation on DBMs. When two edges
have the same source node, the pairs of the relativised condition and the DBM of
1 Here we omit the global clock in [3].
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the form 〈ϕ, D〉 from these edges are disjointed together at the source node. For
a non-leaf node, it may have more than one pair of 〈ϕ, D〉, each of which is the
precondition of a different path from itself to a leaf node. Thus the precondition
of the given path is the disjunction of all pairs of 〈ϕ, D〉 associated with the root
nodes. In the rest of this paper, we only give the disjunction of predicates as
the path precondition, since the main purpose to use DBMs is to calculate the
reachability.

3 The Paradoxical Problem

3.1 An Example

Let us consider the following example in Figure 2. A timed system is composed
of two processes represented by program 1 and 2. x, cont, y, f1 and f2 are local
variables and s and z are shared variables.

Program 1 Program 2
begin begin

p1: x := 1; q1: while (true) do
p2: while (true) do begin

begin q2: wait(s > 0, −1, f2);
p3: s := x; q3: y := s;
p4: wait(z > 0, l, f1); q4: s := 0;
p5: if (f1 = 0) then q5: z := 1

begin end
p6: z := 0; end.
p7: x := x + 1

end
else

p8: cont := 1
end

end.

Fig. 2. A simple concurrent real-time system

The semantics of the wait statement is described as follows: It has three
parameters. The first one is the condition it waits for to become true. The
second is the time limit and the third is a variable. A timer is started when the
statement is executed. If the time limit is reached before the condition becomes
true, a timeout is triggered and the variable is set to 1. If the condition becomes
true before timeout, the variable is set to 0 and the timer is stopped. It is not
appropriate to detect whether the wait statement timeouts or not by testing the
condition because the condition may not be accessed after wait statement. That
the time limit is −1 means the process can wait for the condition forever without
timeout. In this example, l is a parameter which is the time limit of a timer.
(Note that l can be substituted to a constant as well.) If the condition z > 0 is
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not detected before the time limit is reached, a timeout would be triggered. The
value range of l is computed automatically during precondition calculation and
given by a predicate in the precondition. The ranges for program variables are
given in the precondition as well.

The flow chart for Program 1 is shown on the left part of Figure 3, and the one
for Program 2 on the right. Each flow chart node corresponds to an assignment
statement, or a condition of a conditional or loop statement. A flow chart node
and its corresponding statement or condition has the same label.

p7: x := x + 1

START

q1: true ?

q2: s > 0!

yes

END

no

q3: y := s

q4: s := 0

q5: z := 1

START

p1: x := 1

p2: true ?

p3: s := x

yes

END

no

p4: f1 := z > 0!@l

p5: f1 = 0 ?

p6: z := 0

yes

p8: cont := 1

no

Fig. 3. The flow charts

The corresponding transition system of Program 1 and 2 is shown in Figure 4.
Each node in the figure is a location and each edge represents a transition. The
bounds are shown to the right of enabling conditions and transformations. An
assignment is translated into a transition with the enabling condition true. A
branch node is translated into two transitions with null transformation (denoted
as No op). (Note that there might be another way to translate a branch node.
But every method has its pros and cons.) The time bounds in Figure 4 are chosen
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not f1 = 0 [8, 10] 
 No_op [1, 2]

true [0, 0] 
 x := x + 1 [26, 40]

true [10, 15] 
 z := 0 [8, 10]

1

2

true [0, 0] 
 x := 1 [8, 10]

3

true [0, 0] 
 No_op [1, 2]

4

true [10, 15] 
 s := x [8, 10]

5

z > 0 [10, 15] 
 f1 := 0 [8, 10]

true [l, l + 1] 
 f1 := 1 [8, 10]

6

f1 = 0 [8, 10] 
 No_op [1, 2]

8

7

true [0, 0] 
 cont := 1 [8, 10]

true [10, 15] 
 z := 1 [8, 10]

true [0, 0] 
 No_op [1, 2]

true [10, 15] 
 s := 0 [8, 10]

1

2

3

s > 0 [10, 15] 
 f2 := 0 [8, 10]

4

true [10, 15] 
 y := s [16, 20]

5

Fig. 4. Program 1 (left) and 2 (right)

as follows: the bound for condition true in timeout transition is [l, l + 1] and the
bound for condition true in other transitions is [0, 0]; the bound for evaluating
the nontautological enabling condition of a transition which does not access any
shared variable is [8, 10]; the bound is [10, 15] if the transition accesses a shared
variable; assigning an instant value to a variable is bounded by [8, 10]; addition
operation has the bounds [10, 20] and No op has the bounds [1, 2].

3.2 The Problem

Figure 5 shows two partial order executions. They are depicted by flow chart
nodes. An edge in a partial order means the source transition of the edge must
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p1: x := 1

p2: true ?

p3: s := x

p4: f1 := z > 0!@l q2: s > 0!

p5: f1 = 0 ? q3: y := s

q1: true ?

q4: s := 0

q5: z := 1

p8: cont := 1

p1: x := 1

p2: true ?

p3: s := x

p4: f1 := z > 0!@l q2: s > 0!

p5: f1 = 0 ? q3: y := s

q1: true ?

q4: s := 0

q5: z := 1

p3: s := x

p8: cont := 1

p2: true ?

Fig. 5. Partial order 1 (left) and 2 (right)

be executed before the target transition being executed. For example, the edge
from p3 to q2 means the statement p3 must be executed before the statement
q2 is executed.

The precondition2 for the partial order 1 is

z ≤ 0 ∧ s ≤ 0 ∧ 48 ≤ l ≤ 84

and that for partial order 2 is

(z ≤ 0 ∧ s ≤ 0 ∧ 13 ≤ l ≤ 65) ∨ (z ≥ 1 ∧ s ≤ 0 ∧ 13 ≤ l ≤ 14).

We denote that a partial order is executable if its precondition is not false;
otherwise, the partial order is unexecutable. Obviously, if we replace l by 40 in
Program 1, partial order 1 is unexecutable, while partial order 2 is executable.
The difference between these two partial orders is that Process 1 executes a
few more statements on partial order 2 than on partial order 1, while Process
2 executes the same statements on both partial orders. Both partial orders are
2 The Omega library, which we used to simplify Presburger formula, operates on in-

tegers such that it simplifies l < n to l ≤ (n − 1).



Time Unbalanced Partial Order 161

executable in untimed systems because the extra statements on partial order 2
do not change the precondition on program variables. This case reveals that time
constraints could distinguish two partial orders that cannot be distinguished in
untimed systems.

Now we explain how time constraints affect preconditions in this case. In both
partial orders, statement q2 is first enabled at the same time or after statement
p4 becomes enabled because q2 can only be enabled after both q1 and p3 are
executed, while p4 could be enabled after p3 is executed but before q1 is executed.
The sequences 〈p4, p5, p8〉 and 〈q2, q3, q4, q5〉 on the partial order 1 are local to
Process 1 and 2 respectively since there is no dependence between them. (Note
that p4 on 〈p4, p5, p8〉 behaves as the transition true → f1 := 1, which can be
seen in Figure 4.) Therefore, the execution of 〈p4, p5, p8〉 is independent of the
execution of 〈q2, q3, q4, q5〉. To be executed, each sequence is translated into a
sequence of automaton states and edges. Let a be the last automaton state of
the sequence 〈p4, p5, p8〉 after translation, b that of the sequence 〈q2, q3, q4, q5〉.
Since the DAG for partial order 1 is very complicated, Figure 6 only shows a
part of it and the initial node. The dot lines in the figure denote the part of
the DAG being omitted. Each DAG node is a compound state which contains
a state in Process 1 and a state in Process 2. Only a and b are labeled in
the figure. A node labeled as only a or b means that this node contains a or
b but not both. In the DAG, there are a group of interleaving paths, each of
which represents an execution schedule of these two sequences and ends with a
compound state containing both a and b. By adding all lower bounds and the
upper bounds along these two sequences, it is easy to see that the maximum
execution time of the sequence 〈p4, p5, p8〉 is 73, while the minimum execution
time of the sequence 〈q2, q3, q4, q5〉 is 80, under the condition l = 40. This means
that during the execution of any interleaving path, the system would definitely
reach some states Q (which are DAG nodes labeled “a” in Figure 6) that contain
a, but not b. (Computation on DBMs shows that a state containing only b is
unreachable.) For each state after Q, Process 1 will stay at a until Process 2
reaches b. However, at state a, the statement p2 is enabled and thus there is a
time constraint in the state invariant of a that requires Process 1 to execute p2
and then leave a before Process 2 reaches b. In other words, the given partial
order requires that the system reaches a state which contains a and b, but the
times constraints make this state unreachable. Starting from an unreachable
state, the backward calculation of path precondition gives false as the result.

On the other hand, let a′ be the last automaton state of the sequence 〈p4, p5,
p8, p2, p3〉 on the partial order 2. b is still the last state of 〈q2, q3, q4, q5〉. By
applying the algorithm in the next section, we know that the maximum execution
time of 〈p4, p5, p8, p2, p3〉 is 92. For the partial order 2, therefore, the system can
reach the final state which contains both a′ and b, i.e., the system could enter a
state after which either Process 1 stays at a′ until Process 2 reaches b or Process
2 stays at b until Process 1 reaches a′. Thus the precondition of partial order 2
is not false.
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a

a

a

a

bb a

b a

b a

b a

b a

b a

b
a

Fig. 6. The DAG for Partial order 1
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3.3 The Definition

The problem above can be formally interpreted by time unbalanced partial order,
which is defined as follows. Let ρ be a partial order in a system composed of n
(n > 1) processes P1, . . . , Pn. Let ρi = αi

0α
i
1 . . . αi

mi
be the projected path which

is the projection of ρ onto Pi. Each αi
j (0 ≤ j ≤ mi) is a statement of Pi.

For example, in the partial order 1 in Figure 5, there are two projected paths:
ρ1 = 〈p1, p2, p3, p4, p5, p8〉 and ρ2 = 〈q1, q2, q3, q4, q5〉. Another example is the
partial order in Figure 7. This partial order is defined over Program 1 and 2 in
Figure 2 as well. It is similar as the partial order 2 in Figure 5 except that the
partial order 2 contains the statement q5 in Program 2, while this partial order
does not. The edge from q4 to the second appearance of p3 in Figure 7 means that
q4 must be fired earlier than the second appearance of p3. This partial order has
two projected paths: ρ3 = 〈p1, p2, p3, p4, p5, p8, p2, p3〉 and ρ4 = 〈q1, q2, q3, q4〉.

Let T (ρi) be the execution time of ρi. For any two sequences ρi and ρj (1 ≤
i, j ≤ n and i  = j), T (ρi) < T (ρj) if ρi and ρj satisfy one of the following
conditions:

p2: true ?

p1: x := 1

p2: true ?

p3: s := x

p4: f1 := z > 0!@l q2: s > 0!

p5: f1 = 0 ?

q3: y := s

q1: true ?

q4: s := 0

p3: s := x

p8: cont := 1

Fig. 7. An example partial order
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1. The last statement of ρj, which is αj
mj

, depends on αi
mi

, which is the last
statement of ρi. That is, αi

mi
is required by the partial order to be fired

before αj
mj

is fired. For example, the second appearance of p3 in ρ3, which
is the last statement of ρ3, depends on q4, the last statement of ρ4, because
of the edge from q4 to the second appearance of p3 in Figure 7.

2. If αi
mi

and αj
mj

do not depend on each other, the maximum execution time
of ρi is smaller than the minimum execution time of ρj. For example, the
maximal execution time of ρ1 in the partial order 1 is 110 and the minimal
execution time of ρ2 is 117.

The projected paths ρi and ρj form a time unbalanced projected path pair, where
ρi is the short projected path and ρj is the long one. For two projected paths ρk

and ρl, T (ρk) ≈ T (ρl) if T (ρk) ≮ T (ρl) and T (ρl) ≮ T (ρk). A partial order ρ is
a time unbalanced partial order if there exist some time unbalanced projected
path pairs in ρ. For example, the partial order 1 is a time unbalanced partial
order because ρ1 and ρ2 satisfy the second condition and then construct a time
unbalanced projected path pair. The partial order in Figure 7 is time unbalanced
as well since ρ3 and ρ4 satisfy the first condition.

Time unbalanced partial order is very common on timed automata. For ex-
ample, a linear partial order, where there is only one root statement, one leaf
statement and one path from the root to the leaf, is a time unbalanced partial
order. We denote a partial order ρ1 is a prefix of another partial order ρ2 if any
equivalent path represented by ρ1 is a prefix of an equivalent path represented by
ρ2. ρ2 is longer than ρ1. A time unbalanced partial order ρ whose precondition
is false is extendable if it is a prefix of a longer path ρ′ whose precondition is
not false and the projected paths which have the longest execution time in both
ρ and ρ′ are the same. The second requirement ensures that only the projected
paths which have short execution time are extended.

When calculating the precondition of a time unbalanced partial order, there is
a danger that the partial order precondition could be false, but the precondition
of the corresponding untimed partial order is not false, which is the case occurred
on the partial order 1. However, not all time unbalanced partial orders have
false as their preconditions. Although an unbalanced pair of projected paths
could lead the system entering a state from which the final state is unreachable,
whether the system enters such a state invariantly or not depends on not only
time unbalanced projected path pairs, but also their successive statements. Let
a be the last automaton state of the short projected path of a pair. Let τ be
any transition starting at a and u be the upper bound for its enabling condition.
If τ is continuously enabled longer than u before the long projected path ends,
the partial order precondition is false because u forces τ to be fired (but τ does
not appear on the partial order). On the other hand, if a partial order is not
extendable, i.e., it is unexecutable due to some time constraints other than the
gap between execution times of two processes in an unbalanced projected path
pair, its precondition should be false, though the corresponding untimed partial
order could have non-false precondition.
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Computing each projected path’s running time is as follows. Let ni be a node
in the partial order. Let MAX(ni) and MIN(ni) be the maximum execution
time and the minimum execution time of a projected path which contains ni after
ni is executed, and max(ni) and min(ni) be the maximum execution time and
the minimum execution time of ni. max(ni) and min(ni) are obtained from time
bounds. If ni is a root node, MAX(ni) = max(ni) and MIN(ni) = min(ni).
Otherwise, assume ni has k predecessors nj, . . . , nj+k−1:

MAX(ni) = max{MAX(nj), . . . , MAX(nj+k−1)} + max(ni)

MIN(ni) = max{MIN(nj), . . . , MIN(nj+k−1)} + min(ni).

A projected path’s maximum and minimum execution time is the MAX and
the MIN of its last node respectively.

The algorithm above only gives estimated execution time, not accurate one,
because the real execution time may also depends on the transitions that do
not appear in the partial order. Therefore, this algorithm cannot be used to
substitute the one in [3] to calculate the precondition of a partial order. But it
is enough to tell us whether a particular partial order is time unbalanced or not.

The time unbalanced partial order also reveals why the lower bound for l on
the partial order 1 is 48. It is natural to think that Process 1 would timeout even
when l < 48. But 48 ensures that the partial order 1 is not time unbalanced. For
the same reason, the lower bound of l is 13 on the partial order 2.

4 A Remedy to the Problem

Though it is helpful to indicate that a partial order is time unbalanced in addition
to tell users the partial order precondition, it is better to let the users learn more
about the partial order than that the partial order precondition is false. The basic
reason that a partial order is time unbalanced is that there is a gap between the
executions of two processes in an unbalanced pair. If we allow the process which
has the short projected path to continue running, i.e., leave its last state on the
projected path, the gap could be filled and the unbalanced pair is changed to
a balanced one. But the successive transitions should not alter the interprocess
partial order relations, i.e., the successive transitions could not change the value
of shared variables used by other processes.

4.1 The Remedy Method

Since the successive statements of a projected path are different on different par-
tial orders and in different systems, and the execution time gap between a pair
of unbalanced projected paths is different among partial orders and systems, it
could be difficult to explore all possibilities to allow a process executing succes-
sive statements, in particular, in the case of nondeterminism. A simple method
to allow processes to execute extra transitions and not change the partial order
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is for each projected path, to remove the time constraints in state invariant of
the last node during constructing the DAG. This method allows a process to
execute any successive statements without care of which statements are chosen
and how many statements need be executed to fill the time gap. After being
applied this method, the precondition of the partial order 1 under l = 40 is
z ≤ 0 ∧ s ≤ 0, which is what we expect. The new precondition is noted as the
underlying precondition.

However, this method only remedies the gap between execution times among
processes for a time unbalanced partial order so that it cannot be used carelessly.
It cannot be applied to partial orders that are not extendable, since for a time
unbalanced and unextendable partial order, it is not the gap between execution
times of two processes that makes the precondition of the partial order become
false. Thus, it would calculate a wrong precondition if we apply this methods
to an unextendable partial order. For example, consider the following programs.
We choose the time bounds according the criteria in Section 3.1, i.e., the upper

Program 3 Program 4
begin begin

P1: wait(x > 0, 50, f1); Q1: x := 1
P2: if (f1 = 0) then end.
P3: y := 0

else
p4: y := 1;

end.

Fig. 8. A negative example

bounds for the enabling condition and the transformation of transition Q1 are 15
and 10, respectively. The time limit of the timer in statement P1 is 50 according
to the semantics of the wait statement. The partial order in the left path of
Figure 9 is time unbalanced and cannot be extended to an executable balanced
partial order. It is also unexecutable since it can only be extended to the partial
order in the right part of the figure, which is unexecutable because the condition
x > 0 is satisfied before time progresses up to 50 units and the variable f1 is set
to 0.

Until now, the methodology assumes all processes on the partial order start
at the same time. If not all of them can start at the same time, the precon-
dition could be false. It is a reasonable assumption in many cases, especially
when the partial order contains the first transition of each participant process.
In fact, a partial order does not necessarily start at the first transition of ev-
ery process. The methodology in [3] also does not have such requirement. This
gives testers great convenience because sometimes it is very difficult to know
the whole sequence of transitions from the beginning that causes an error, but
it is easy to know a part of sequence which causes the error. Testers are able
to concentrate on this part of sequence, without worrying about the whole se-
quence. However, this convenience does not cost nothing. The precondition of
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P1: f1 := x > 0!@50

P2: f1 = 0 ?

P4: y := 1

P1: f1 := x > 0!@50

P2: f1 = 0 ?

Q1: x := 1

P4: y := 1

Fig. 9. Two unextendable partial orders

a partial order could be false because one process starts later than another.
Let ai be the first state of Process i on the partial order. That is, we assume
the system begins to run from a compound state containing all ai states, while
this state is unreachable from the initial state. But it is often difficult to know
which starting state is a reachable state from the initial state. In such cases,
the concepts introduced previously can be extended easily to handle this sit-
uation. Removing the time constraint in the state invariant of every ai allows
that each process starts at a different time and then we can calculate the un-
derlying precondition.

4.2 An Application of the Method

This method has another usage that it also releases the users from specifying a
set of partial orders to obtain a complete precondition. One partial order could
give them a satisfying answer. For example, we may be interested in the maximal
upper bound and minimal lower bound of l between that timeout may occur.
When z < 0, the conditions of l on the partial order 1 and the partial order 2
are 48 ≤ l ≤ 84 and 13 ≤ l ≤ 65. It is obvious that 48 is not the minimal lower
bound since it is grater than 13 and 65 is not the maximal upper bound since
65 < 84. Furthermore, we cannot draw the conclusion that 13 is the minimal
lower bound and 84 the maximal upper bound because of an obvious fact that
timeout would occur when l = 0. We have to check more partial orders, such as
the partial order 3 and the partial order 4 in Figure 10, in order to obtain the
proper bounds. These partial orders are similar as the partial order 1 in Figure 5,
except that Process 2 has fewer transitions involved in them. The conditions of
l on the partial order 3 and 4 are

(z ≤ 0 ∧ s ≤ 0 ∧ 12 ≤ l ≤ 49) ∨ (z ≥ 1 ∧ s ≤ 0 ∧ 12 ≤ l ≤ 14)

and
z ≤ 0 ∧ s ≤ 0 ∧ 30 ≤ l ≤ 74

respectively. These conditions are still not what we expect. This example demon-
strates it is not easy to get the proper bounds for time parameters.
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p1: x := 1

p2: true ?

p3: s := x

p4: f1 := z > 0!@l q2: s > 0!

p5: f1 = 0 ? q3: y := s

q1: true ?

p8: cont := 1

p1: x := 1

p2: true ?

p3: s := x

p4: f1 := z > 0!@l q2: s > 0!

p5: f1 = 0 ? q3: y := s

q1: true ?

q4: s := 0p8: cont := 1

Fig. 10. Partial order 3 (left) and 4 (right)

However, we obtain the promising bounds when we apply the remedy method
to the partial order 1. The underlying precondition of the partial order 1 is

(z ≤ 0 ∧ s ≤ 0 ∧ 0 ≤ l ≤ 92) ∨ (z ≥ 1 ∧ s ≤ 0 ∧ 0 ≤ l ≤ 14).

0 is the lower bound we expect. 92 is believed to be the correct upper bound
after we check the time constraints of the partial order 1 carefully. Furthermore,
the new condition also tell us under 0 ≤ l ≤ 14, timeout can occur even when
z > 0. This coincides with the time constraints of statement p4. The reason why
we use this method on the partial order 1 is that sequence 〈q2, q3, q4, q5〉 is the
maximal one before condition z > 0 holds. The minimal lower bound is obtained
by executing 〈q2, q3, q4, q5〉 after p4 is executed and the maximal upper bound
is obtained by executing p4 after 〈q2, q3, q4, q5〉 is executed. Using the partial
order 2 generates the same bounds but it takes a much longer time to calculate
the precondition for the partial order 2 than for the partial order 1.

In the literature, there are several papers studying parametric model check-
ing [2, 6]. Constraints on parameters can be deduced by parametric model check-
ing as well. The advantage of parametric model checking is that it is an auto-
matic technique to obtain the constraints with respect to a property. But it
might search a very large state space and visit irrelevant states. In contrast, our
method is not automatic, but requires the users to specify the partial order to
compute the constraints. In other words, it involves human intelligence. Hence,
the advantage of our method is that it searches far smaller state space than
parametric model checking does if users provide an appropriate partial order. Of
course, choosing an appropriate partial order may not be achieved easily for a
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complicated system. Therefore, our method is more suitable for advanced users
than for inexperienced users.

5 Conclusion

In this paper we identified time unbalanced partial order in timed systems and
gave its definition. This phenomenon is caused by unbalanced projected path
pairs and does not exist in untimed systems. The gap between a pair of unbal-
anced projected paths might force the system to enter a state from which the
final state required by the partial order is unreachable. Due to the existence
of time unbalanced partial order, testers may not easily distinguish an extend-
able partial order from an unextendable one, but these two kinds need different
treatments. We proposed an algorithm to check whether a partial order is time
unbalanced or not and a remedy method to transform an unbalanced partial
order into a balanced one so that we can calculate its underlying precondition.
We also applied the remedy method to simplify calculating the maximal and
the minimal bounds of a time parameter. Generally speaking, on the one hand,
time unbalanced partial order can cause troubles to testers so that they must
be careful when specifying a partial order; on the other hand, it is helpful to
simplify computation in some circumstances.
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Abstract. The global testing problem studied in this paper is to seek a definite
answer to whether a system of concurrent black-boxes has an observable behav-
ior in a given finite (but could be huge) set Bad. We introduce a novel approach
to solve the problem that does not require integration testing. Instead, in our ap-
proach, the global testing problem is reduced to testing individual black-boxes
in the system one by one in some given order. Using an automata-theoretic ap-
proach, test sequences for each individual black-box are generated from the sys-
tem’s description as well as the test results of black-boxes prior to this black-box
in the given order. In contrast to the conventional compositional/modular verifi-
cation/testing approaches, our approach is essentially decompositional. Also, our
technique is complete, sound, and can be carried out automatically. Our experi-
ment results show that the total number of tests needed to solve the global testing
problem is substantially small even for an extremely large Bad.

1 Introduction

Testing a concurrent and component-based system is notoriously difficult[16, 14]. One
difficulty comes from the system’s nondeterminism and the synchronizations among
concurrently running components. Another difficulty lies in the fact that, in a
component-based system, its constituent components could be some externally obtained
software components (such as COTS products) whose source codes and design details
are usually not available. In that case, traditional white-box techniques (like static analy-
sis) are not applicable to analyzing the system. These components can be readily treated
as black-boxes whose models (both at code level and design level) are unknown. In this
paper, we study a testing problem for such a system of concurrent black-boxes.

In our setup, a system of concurrent black-boxes consists of a host system (called the
gluer) and a number of black-boxes. Each of the gluer and the black-boxes is called a
unit (or a component), which is a (possibly nondeterministic and infinite-state) labeled
transition system, each of whose labels represents either an observable action or an in-
ternal action. All the units in the system run concurrently and synchronize on a number
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of observable actions. The gluer is a fully specified finite-state unit. For each black-box,
however, except for its interface (i.e., the set of its observable actions), everything else is
unknown, while its implementation is always available and can be black-box tested. A
global bad behavior is an observable behavior of the system in a given finite set Bad.
Finally, the global testing problem studied in this paper is to verify (with a definite
answer) that, for the given set Bad, the system does not have a global bad behavior.

A straightforward approach to solve the global testing problem is to perform inte-
gration testing over the system as a whole and see if the system exhibits a bad behavior.
However, there are fundamental difficulties with this approach. For instance, in some
applications [29], integration testing may not be applicable at all. Even when integra-
tion testing is possible in some situations, the system itself is often nondeterministic.
The combinatorial blow-up on the number of the executions caused by nondeterminis-
tic interleavings among the concurrent units in the system generally makes it infeasible
to do thorough integration testing, while we are looking for a definite answer to the
global testing problem. Due to the same reason, even when one has a way to handle the
nondeterminism [30], the size of the given set Bad (which could be very large, e.g.,
more than 1024 in some of our experiments shown later) may also make exhaustive
integration testing infeasible.

A less straightforward approach is to combine testing with some formal method. For
instance, one can extensively test each black-box alone and try to build [25] a partial
model of the black-box from the test results. Then, one can run a formal method like
model-checking on the partial system model built from the partial models of the black-
boxes to solve the global testing problem. However, this approach is also difficult to
implement. For instance, it is hard to choose effective test sequences to build a partial
model of a black-box, and it is also hard to know when the tests over a black-box are
adequate. Moreover, the partial (and hence approximated) system model might not help
us obtain a definite answer to the global testing problem. To avoid the above difficulties,
one may also try, using some formal method, to derive an expectation condition over a
black-box’s behaviors such that: when every black-box behaves as expected, the system
guarantees to not have a global bad behavior. Then the expectation conditions can be
used to generate test sequence for the black-boxes. However, the interactions among
the concurrent black-boxes make it difficult to derive such conditions automatically
(see Section 2 for related work on the assume-guarantee style reasoning).

In this paper, we introduce a novel approach (called the “push-in” technique) to solve
the problem, which does not entail any integration testing. Instead, in our approach, the
global testing problem is reduced to testing individual black-boxes in the system one by
one in some given order. Using an automata-theoretic approach, test sequences for each
individual black-box are generated from the system’s description as well as the test re-
sults of black-boxes prior to the black-box in the given order. Suppose that B1, . . ., Bk

represent the concurrent black-boxes in a system. The first step of our approach is
to compute an auxiliary set A1 of sequences of observable actions for black-boxes
B1, . . ., Bk and a set U1 of test sequences for black-box B1. Then we test the black-box
B1 with test sequences in U1 and collect all successful test sequences into a surviving
set SUV1. In the second step, from the surviving set SUV1 and the auxiliary set A1,
we compute the auxiliary set A2 (for black-boxes B2, . . ., Bk) and the test sequence
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set U2 for black-box B2. Again, after testing black-box B2 with test sequences in U2,
we collect all successful testing sequences into a surviving set SUV2. Subsequent steps
follow similarly, and eventually, in the last step (i.e., step k), the global testing problem
will be decided from the surviving sets. That is, the system has no global bad behavior
iff, for some 1 ≤ i ≤ k, the surviving set SUVi is empty. We also provide a procedure
to recover a global bad behavior when the answer to the original problem is “no”.

Since the sets (i.e., Ui and Ai) are provably finite and, in many cases, huge, we use
(finite) automata that accept the sets as their symbolic representations, and standard au-
tomata operations are used to manipulate these sets. Also, the global testing problem
is decomposed into a series of testing problems over each individual black-box in the
system. Hence, our approach is an automata-theoretic and decompositional approach.
Moreover, the “push-in” technique is both complete and sound, and can be carried out
automatically. In particular, we show that the technique is “optimal” in the sense that
each test we run over a black-box has the potential to discover a global bad behav-
ior (i.e., we never run useless tests). In general, exhaustive integration testing over a
concurrent system is infeasible. However, our experiments show that, using the push-
in technique, we can completely solve the global testing problem with a substantially
smaller number of tests over the individual black-boxes, even for an extremely large set
of Bad (some of our experiments performed only about 105 unit tests for a Bad of size
more than 1024).

The rest of this paper is organized as follows. In Section 2, previous work related to
this paper is discussed. In Section 3, the formal definitions for a system of concurrent
black-boxes and its global testing problem are presented. In Section 4, the detail of the
push-in technique is shown. In Section 5, a set of experiments are run and the results
are analyzed. Finally, Section 6 points out some future work.

2 Related Work

The global testing problem is essentially a verification problem since we are looking for
a definite answer. In the area of formal verification, there has been a long history of re-
search on exploiting compositionality in system verification, and a common technique
is to follow the “assume-guarantee” reasoning paradigm [20, 27, 19, 7, 2, 9, 8, 3]. How-
ever, a successful application of the paradigm depends on the correct assumptions for
the components in a system, which are, in general, formulated manually. Several authors
suggest solutions to the problem of automated assumption generation [17, 18, 12, 15].
But the solutions require that the source code and/or the finite-state design is available
for a unit, which, unfortunately, is not the case in our setup. Although our push-in tech-
nique relies on black-box testing instead of an “assume-guarantee” mechanism, it can be
extended to a system where a black-box is associated with environmental assumptions.

In the area of software testing, researchers have long recognized the importance of
combining formal methods (like model-checking) and testing techniques for system
verification. Most work (e.g., [6, 10, 13]) stems from the spirit of specification-based
testing, and utilizes model-checkers’ capabilities of generating counter-examples from
a system’s specification to produce test-cases against an implementation. This approach
typically works at the unit level and lacks a “control” over the generated test-cases,
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since, unlike our technique, it does not have an overall and analytical characteriza-
tion over all the useful (i.e., has the potential to recover a global bad behavior) test
sequences. In contrast to our ideas, theoretical work in [25, 34] focuses on complete
testing over a single and finite-state black-box with respect to a temporal property. The
decompositional approaches proposed in [11, 21] for model-checking feature-oriented
software designs rely totally on model-checking techniques (no testing) and could cause
false negatives. Integration testing of concurrent programs in [30] relies on a specifica-
tion (unavailable in our model) of a concurrent program.

The quality assurance problem for component-based software has attracted lots of
attention in software engineering. However, most work considers the problem from
component developers’ point of view; i.e., how to ensure the quality of components
before they are released (e.g., [24, 33, 32, 28]). This view, however, is fundamentally
insufficient: an extensively tested component (by the vendor) may still not perform as
expected in a specific deployment environment, since the deployment environments of
a component could be quite different and diverse such that they may not be thoroughly
tried by the vendor. Our push-in technique approaches this problem from system devel-
opers’ point of view: how to ensure that multiple components function correctly in a
host system where the components are deployed. In our technique, test sequences run
on a component are customized to its specific deployment environment. Unlike our ap-
proach, frameworks like [4] require a complete specification about the component to be
incorporated into a system, which is not always possible.

3 Preliminaries

In this paper, we consider a system of (concurrent) black-boxes, which consists of a
host system (called the gluer) and a collection of black-box components (simply called
black-boxes). Each of the gluer and the black-boxes is a unit. In the rest of the section,
we will present the model of a unit, the model of the system of black-boxes, and the
global testing problem for the system.

3.1 The Unit Model

A unit is a nondeterministic and labeled transition system T that moves from one state
to another while performing an action. Formally, T = 〈S, sinit,∇, R〉, where S is an
(infinite and countable) set of states with sinit ∈ S being the initial state, ∇ is a finite set
of actions, and R ⊆ S×∇×S defines the transition relation. In particular, the action set
∇ is partitioned into three disjoint subsets: {ε} (an internal action), Π (input actions),
and Γ (output actions). Especially, the set Σ = Π∪Γ , i.e., the set of observable actions
in T , is called the interface of T . When the set S of states is a finite set, T is called a
finite-state transition system.

A behavior of T is a sequence of actions in ∇: a1. . .ah (for some h) such that
there is a sequence of states s0. . .sh with s0 = sinit and (sj , aj, sj+1) ∈ R for each
0 ≤ j ≤ h − 1. An observable behavior of T is the result of dropping all the internal
actions (i.e., ε’s) from a behavior. Trivially, the empty string is an observable behavior
for any unit T .
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A (unit) test sequence α for T is a sequence of observable actions in Σ. A unit T
is considered to be a black-box if its interface (i.e., Π and Γ ) is the only known part
in its definition. In this case, we assume that T is testable. That is, there is a black-
box testing procedure BBtest(T, ·)1 such that, for any test sequence α, BBtest(T, α)
returns “yes” (i.e., α is successful) if α is an observable behavior of the unit T , and,
BBtest(T, α) returns “no” (i.e., α is unsuccessful) if otherwise.

For example, consider the black-box Comm in Figure 1, which has seven observable
actions (in the figure, we use suffixes ? and ! to distinguish input and output actions
respectively). Assume that the black-box is implemented as shown in Figure 5. Clearly,
send msg ack is a successful test sequence to Comm while send msg fail is not.

Obviously, if one further assumes that the black-box is output deterministic (i.e.,
an input action sequence uniquely decides the corresponding output action sequence),
then a test sequence for the black-box can be simply reduced to a sequence of input
actions. However, there are testable units that are not necessarily output deterministic
(e.g., [23, 31, 26]). Therefore, to make our algorithms (presented later) more general,
we do not apply this assumption (under which, obviously, our algorithm still applies).
That’s why in our definition, a test sequence is always a sequence of both input actions
and output actions.

3.2 The System Model

A system of concurrent black-boxes consists of a gluer G and a number of black-boxes
B1, . . ., Bk, written Sys = G(B1, . . ., Bk). The gluer and the black-boxes are all units
which run concurrently and synchronize on certain actions. More precisely, G is a fully
specified and (nondeterministic) finite-state unit G = 〈S0, s

0
init,∇0, R0〉, whose inter-

face is Σ0 = Π0 ∪ Γ0. Each Bi is a black-box unit B = 〈Si, s
i
init,∇i, Ri〉, which is

testable and whose interface (the only given part of the black-box) is Σi = Πi ∪ Γi.
As mentioned earlier, a black-box is not necessarily a finite-state unit. The state sets
S0, . . ., Sk are all disjoint. But the interfaces Σ0, . . ., Σk may not be disjoint: some
units may share some common actions.

We use Σ = Σ0 ∪ . . . ∪ Σk to denote all the observable actions in the system Sys
(this implies that each unit’s observable actions are also observable in the system), and
use Sig(a), called the signature of a, to denote the set of all 0 ≤ i ≤ k such that
a ∈ Σi. Therefore, the signature indicates the units that share action a.

The system Sys, which also works as a labeled transition system, is a Cartesian
product of its units. That is, Sys = 〈S, sinit,∇,R〉, where S = S0 × . . . × Sk is
the system’s (global) state set S; each unit starts from its own initial state; i.e., the
initial global state sinit of the system is (s0

init, . . .s
k
init); and ∇ = {ε} ∪ Σ with Σ =

Σ0 ∪ . . . ∪ Σk is the system’s action set.
The system’s (global) transition relation R ⊆ S × ∇ × S is more complex. A

global transition that moves the system from a global state (s0, . . ., sk) to another global
state (s

′
0, . . ., s

′
k) while performing an action a ∈ ∇ is in R iff one of the following

conditions is satisfied:

1 The black-box testing procedure can be implemented in practice for a variety of transition
systems [5].
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– a is an internal action (i.e., ε), and exactly one unit in the system performs the
internal action while the remaining units do not move; i.e., ∃0 ≤ i ≤ k. (si, ε, s

′
i) ∈

Ri ∧ ∀0 ≤ j  = i ≤ k. sj = s′j ,
– a is an observable action (i.e., a ∈ Σ), and all the units whose interfaces contain the

observable action a synchronize over the action while the remaining units do not
move; i.e., ∀0 ≤ i ≤ k. (i ∈ Sig(a) ∧ (si, a, s′i) ∈ Ri) ∨ (i  ∈ Sig(a) ∧ si = s′i).

In other words, at any moment in the system Sys, exactly one unit performs an inter-
nal action, exactly one unit performs an observable action that is not shared with any
other unit, or multiple units synchronize over a common observable action. It shall be
noticed from the above definition that the synchronizations allowed in our model are
quite flexible. Not only can the units in a system synchronize over an output/input pair
as most other system models allow, they can also synchronize over just an output action
or an input action, if only they can perform this (no matter output or input) action at a
certain global state. Also, in our model, a synchronization can either occur between a
pair of units or among more than two units; thus multi-cast or broadcast is allowed. Cer-
tainly in some systems, multi-cast, broadcast, or synchronizations over only an output
action or input action may be undesirable. In that case, they can be easily eliminated
just by renaming the actions. It shall also be pointed out that, in the system Sys, if
a global transition is a synchronization over a pair of output and input actions among
some units, these two actions are considered to be one single action, and we do not
discriminate whether it is output or input but just treat it as an observable action to the
environment.

As defined earlier, a sequence α ∈ Σ∗ is an observable behavior of the system
Sys of black-boxes if the system, treated as a transition system, has an execution from
the initial global state to some global state and, on the execution, α is the observable
behavior.
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Fig. 1. A Data Acquisition System

For example, consider a data acquisition system shown in Figure 1, which consists
of one Gluer and three black-box components: Timer, Sensor and Comm. The sys-
tem works as follows. Once started, the Timer keeps signaling a fire event when the
time interval set runs out; the Timer can also be paused (resp. resumed) by an incom-
ing pause (resp. resume) event. The Sensor is supposed to respond to a fire event by
signaling a data event when the sensor’s reading is ready; it also signals a serr event
when something is wrong inside the Sensor. The Comm component responds to a
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Fig. 3. Internal implementation of Timer

send event to send some data by signaling a msg event to some underlying network;
it responds to an ack (resp. nack) event by signaling an ok (resp. fail) event to indi-
cate that the data associated with a previous send event has been transmitted success-
fully (resp. unsuccessfully) by the underlying network; it signals an cerr event when
something is wrong inside Comm. The Gluer (whose transition graph is depicted in
Figure 2) simply relays data from Sensor to Comm; it pauses the Timer when some-
thing is wrong with the Sensor or Comm, and after that, it resumes the Timer when
either an ok or fail is received from Comm. Together, they constitute a data acquidition
system, which periodically transmits a reading of the Sensor through Comm via some
underlying communication network. In this system, the Gluer and the three compo-
nents run concurrently and synchronize with each other by sending and receiving those
events (here, all synchronizations are over output/input pairs between two units). The
internal implementations of the three components are shown in Figure 3, Figure 4, and
Figure 5, respectively 2. It can be seen (though not obviously) that the following se-
quence is an observable behavior of the system: fire fire serr pause data send msg ack ok
resume fire, while sequence fire fire serr data pause send is not.

When all the black-boxes are fully specified, our system model is roughly equivalent
to the IOTS studied in [26]. Our model is also closely related to I/O automata [22] (but
ours is not input-enabled) and to interface-automata [9] (but ours, similar to the IOTS,
makes synchronizations between units observable at the system level). These observable
synchronizations are the key to testing the behavior of a system of concurrent black-
boxes, where an abstract model (such as design or source code) of each black-box is
unavailable.

2 Obviously, the push-in technique does not require these transition graphs, which are provided
only for readers to understand the system.
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Let Bad ⊆ Σ∗ be a given set of test sequences that are not supposed to be the
observable behaviors of the system Sys. The global testing problem is to verify (with a
definite answer) that none of the test sequences in Bad is an observable behavior of the
system. Clearly, in general, the problem can not be solved completely since the set Bad
can be infinite and, for testing, only finitely many test sequences can be run. Therefore,
we assume that Bad is a finite set, which can be given as an explicit list of test sequences
(e.g., Bad = {fire fire, fire fire data, fire data send fire}) or as a symbolic
representation (e.g., Bad is all sequences in regular expression fire data (fire)∗ send
whose lengths are between 10 and 30).

4 The Push-In Technique

In this section, we present the “push-in” technique to completely solve the global testing
problem, by performing unit testing over each individual black-box in the system. A
test sequence is a string or a word. A finite set of test sequences is therefore a regular
language and, in this paper, we use a (finite) automaton that accepts the finite set as
the symbolic representation of the set. Our push-in technique is automata-theoretic. For
each 1 ≤ i ≤ k, the technique generates two automata: Ui and Ai. Automaton Ui, called
a unit test sequence automaton, accepts words in alphabet Σi; i.e., it represents a set of
test sequences for black-box Bi. Automaton Ai, called an auxiliary automaton, accepts
words in alphabet Σi ∪ . . . ∪ Σk (observable actions for the black-boxes Bi, . . ., Bk).
Our push-in technique works in the following k steps, where i is from 1 to k:

Step i. The step consists of two tasks:
(Automaton Generation) This task generates the unit test sequence automaton Ui and
the auxiliary automaton Ai. We first generate the auxiliary automaton Ai. Initially when
i = 1, the generation is based on the Sys’s description (i.e., the gluer G and the inter-
faces for B1, . . ., Bk) and the given set Bad. When i > 1, the generation is based on
the auxiliary automaton Ai−1 and the surviving set SUVi−1 (see below) obtained from
the previous Step i − 1. If the empty string is accepted by the auxiliary automaton Ai,
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then the global testing problem (none of observable behaviors of the system Sys is in
Bad) returns “no” (i.e., a bad behavior of the system exists) – no further steps need to
run. We then generate the unit test sequence automaton Ui directly from the auxiliary
automaton Ai constructed earlier. This task is purely automata-theoretic and does not
involve any testing.

(Surviving Set Generation) In this second task, using BBtest, we perform unit testing
over the black-box Bi for all test sequences accepted by the test sequence automaton Ui

(Ui always accepts a finite set). We use SUVi, called the surviving set, to denote all the
successful test sequences. If the surviving set is empty, then the global testing problem
returns “yes” (i.e., none of observable behaviors of the system Sys is in Bad). Other-
wise, if i < k (i.e., it is not the last step), we goto the following Step i+1. If i = k (i.e.,
it is the last step and the surviving set is not empty), then the global testing problem
returns “no” (i.e., some observable behaviors of the system Sys is indeed in Bad).

In the rest of this section, we will clarify how Automata Generation and Surviving
Set Generation in the k steps can be done. Since our technique heavily depends on
automata theory, we would like to first build the theory foundation of our technique
before we proceed further.

4.1 Theory Foundation of the Push-In Technique

Let us first make a pessimistic (the name is borrowed from the discussions in [9]) mod-
ification of the original system Sys by assuming that each black-box Bi, 1 ≤ i ≤ k,
can demonstrate any observable behavior in Σ∗

i (recalling that Σi is the interface of the
black-box). The resulting system is denoted by ˆSys. Clearly, every observable behavior
of Sys is also an observable behavior of ˆSys (but the reverse is not necessarily true).

Notice that ˆSys does not have any black-boxes since the original black-box Bi, after
the pessimistic modification, can be considered as a finite state unit B̂i with only one
state, where each action in Σi ∪ {ε} is a label on a transition from the state back to
the state. According to the semantics definition presented in Section 3.2, it is not hard
to see that ˆSys itself, after the composition of the gluer G with all the one-state units
B̂1, . . ., B̂k, is a finite state transition system with |G| (the number of states in the gluer)
states and with actions in Σ ∪ {ε}. (Recall that Σ = Σ0 ∪ . . . ∪ Σk is the union of all
observable actions in the gluer and the black-boxes.) The pessimistic system can also
be treated as a pessimistic (finite) automaton by making each state be an accepting state
and each ε-transition be an ε-move. In this way, the language (a subset of Σ∗) accepted
by the automaton is exactly all the observable behaviors of the pessimistic system.

As we have mentioned earlier, the set Bad ⊆ Σ∗ is a finite and hence regular set.
Suppose that the symbolic representation of the set is given as an automaton MBad

(whose state number is written |MBad|); i.e., the language accepted by MBad is exactly
the set Bad.

Using a standard Cartesian product construction, one can build an automaton
Mglobal, called the global test sequence automaton, to accept the intersection of the
language accepted by the pessimistic automaton ˆSys and the language accepted by the
automaton MBad. That is, Mglobal accepts exactly the bad and observable behaviors of
the pessimistic system. Clearly, the state number in Mglobal is at most |G| · |MBad|.
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For a word α ∈ Σ∗, we use α ↓Σi , 1 ≤ i ≤ k, to denote the result of dropping all
symbols not in Σi from α. That is, if α is an observable behavior of the system Sys, then
α ↓Σi is the corresponding observable behavior of black-box Bi. The theory foundation
of our push-in technique can be summarized in the following theorem, which can be
shown using the semantics defined in Section 3.2.

Theorem 1. For any global test sequence α in Σ∗, the following two items are equiv-
alent:

(1) α is a bad (i.e., in Bad) observable behavior of the system Sys of black-boxes
B1, . . ., Bk,

(2) α is accepted by the global test sequence automaton Mglobal, and each of the fol-
lowing k conditions holds:

(2.1) α ↓Σ1 is an observable behavior of B1,
...

(2.k) α ↓Σk
is an observable behavior of Bk.

We use “class C” to denote all the α’s that satisfy Theorem 1 (2). Obviously, the global
testing problem (i.e., there is no bad behavior in Sys) is equivalent to the emptiness of
class C.

In the push-in technique, the jobs of Step 1, . . ., Step k are to establish the emptiness
of class C using both automata theory and black-box testing. One naive approach for
the emptiness is to use Theorem 1 (2) directly: repeatedly pick a global test sequence
α accepted by Mglobal (note that Mglobal accepts a finite language) and, using black-
box testing, make sure that one of the conditions (2.i), 1 ≤ i ≤ k, is false. This naive
approach works but inefficiently. This is because, when Mglobal accepts a huge set (such
as more than 1024 in our experiments shown later), trying every such element is not only
infeasible but also unnecessary. Our approach of doing the job aims at eliminating the
inefficiency. First, we do not pick a global test sequence α. Instead, we compute the
test sequences run on black-box Bi from the testing results on black-box Bi−1 in the
previous Step i − 1. As we have mentioned at the beginning of this section, each Step
i has two tasks to perform: Automata Generation and Surviving Set Generation, which
are presented in detail as follows.

4.2 Automata Generation in Step i

This task in Step i is to generate two automata: the unit test sequence automaton Ui and
the auxiliary automaton Ai.

Initially when i = 1, A1 is constructed as A1 = Mglobal ↓Σ1∪...∪Σk
, i.e., the result

of dropping every transition in Mglobal that is labeled with an observable action not in
Σ1 ∪ . . . ∪ Σk. U1 is constructed as the automaton U1 = A1 ↓Σ1 (i.e., the result of
dropping every transition in A1 that is labeled with an observable action not in Σ1).
Observe that A1 accepts the language A1 = {α ↓Σ1∪...∪Σk

: α accepted by Mglobal}
and U1 accepts the language U1 = {α ↓Σ1 : α is in A1}. The state number in either of
the two automata, in worst cases, is |Mglobal|.
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When i > 1, the two automata Ai and Ui are constructed from the auxiliary au-
tomaton Ai−1 and the surviving set SUVi−1 obtained in the previous step. To con-
struct Ai, we first build an automaton suvi−1 to accept the finite set SUVi−1. Then,
we build an intermediate automaton Mi−1 that works as follows: on an input word
in (Σi−1 ∪ . . .Σk)∗, Mi−1 starts simulating Ai−1 and suvi−1 on the word, in parallel.
During the simulation, whenever suvi−1 reads an input symbol that is not in Σi−1 (note
that suvi−1 only accepts words in Σ∗

i−1), it skips the input symbol. Mi−1 accepts the
input word when both Ai−1 and suvi−1 accept. Finally, the auxiliary automaton Ai is
constructed as Ai = Mi ↓Σi∪...Σk

. The unit test sequence automaton Ui is constructed
as Ui = Ai ↓Σi .

One can show that each of the two automata Ai and Ui has, in worst cases, a state
number of |Ai−1| · |suvi−1|. Also, Ai accepts the language Ai = {α ↓Σi∪...∪Σk

: α ∈
(Σi−1∪. . .∪Σk)∗ is in Ai−1 and α ↓Σi−1 is in SUVi−1} and Ui accepts the language
Ui = {α ↓Σi : α ∈ (Σi ∪ . . .Σk)∗ is in Ai}.

As we have mentioned earlier, when the empty string is accepted by the auxiliary au-
tomaton Ai (a standard membership algorithm can be used to validate the acceptance),
our push-in technique will return a “no” answer on the global testing problem (i.e., the
system does have a bad observable behavior) and no further steps need to run.

4.3 Surviving Set Generation in Step i

The surviving set SUVi is the set of all successful unit test sequences α ∈ Ui; i.e.,
SUVi = {α ∈ Σ∗

i : α ∈ Ui and α is an observable behavior of black-box Bi}.
A straightforward way to obtain the set is to run the black-box testing procedure

BBtest over the black-box Bi with every test sequence in Ui. This is, however, not
efficient, in particular when the set Ui is huge. Observable behaviors of a unit are prefix-
closed: if α is not an observable behavior of Bi, then, for any β, αβ can not be (i.e., test
sequence αβ need not be run). With prefix-closeness and BBtest, we use the following
automata-theoretic procedure to generate the surviving set SUVi.

Recall that Ui is a finite set of unit test sequences and, as a regular language, ac-
cepted by the unit test sequence automaton Ui. Let m be the maximal length of all test
sequences in Ui (the length can be obtained using a standard longest path algorithm
over the transition graph of automaton Ui). Our procedure consists of the following m
jobs. Each Jobj , where j is from 1 to m, is to identify (using black-box testing) all the
successful test sequences (with length j) which are prefixes (which are not necessarily
proper) of some test sequences in Ui. In order to do this efficiently, the job makes use
of the previous testing results in Θj−1. More precisely, each Jobj has two parts (by
assumption, let Θ0 contain only the empty word.):

– Define Pj to be the set of all the prefixes with length j of all the unit test sequences
in Ui. Calculate the set P̂j ⊆ Pj such that each element in P̂j has a prefix (with
length j − 1) in Θj−1. To implement this part, one can first construct an automaton
(from automaton Ui) to accept the language Pj . Then, construct another automaton
to accept the set Θj−1. Finally, an automaton M can be constructed from these two
automata to accept the language P̂j . All the constructions are not difficult and do
not involve testing.
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– Using BBtest, generate the set Θj that consists of all the successful test sequences
over black-box Bi in P̂j . Hence, one only runs test sequences in P̂j instead of the
entire Pj , thanks to the previous testing results in Θj−1.

It is left to the reader to verify that, after the jobs are completed, the surviving set SUVi

can be obtained as Ui ∩ (∪0≤j≤mΘj). Again, this set can be accepted by an automaton,
treated as a symbolic representation of the set, constructed from automaton Ui and
the automata built in the above jobs to accept Θj , 1 ≤ j ≤ m. One can choose the
procedure to output the explicit set SUVi or its symbolic representation suvi.

4.4 Correctness and Bad Behavior Generation

Since the global testing problem is equivalent to the emptiness of class C, we only need
to show that the emptiness is answered correctly with the push-in technique. Clearly,
the technique always terminates with a yes/no answer. It returns “yes” only at some
Step i, 1 ≤ i ≤ k, whose surviving set SUVi = ∅. It returns “no” only

CASE 1. At some Step i, 1 ≤ i ≤ k, when the auxiliary automaton Ai accepts the
empty word, or

CASE 2. At the last Step k when SUVk  = ∅.

In these two cases, in order to demonstrate a global bad behavior of the system, we
first define an operation called selectj(·), 1 ≤ j ≤ k. Given a sequence αj , the op-
eration returns a sequence αj−1 (when j = 1, it simply returns αj) satisfying the
following conditions: αj−1 ∈ Aj−1, αj−1 ↓Σj−1∈ SUVj−1 and αj−1 ↓Σj∪...Σk

= αj .
The returned sequence αj−1 may not be unique. In this case, any sequence (such as a
shortest one) satisfying the conditions will be fine. Now, we define another operation
called BadGenj(·), 1 ≤ j ≤ k, as follows. Given a sequence αj , we first calculate
αj−1 = selectj(αj). Then, we calculate αj−2 = selectj−1(αj−1), and so on. Finally,
we obtain α1. At this time, the operation BadGenj(αj) returns any sequence α sat-
isfying the following conditions: α is accepted by Mglobal and α ↓Σ1∪...Σk

= α1. All
these operations can be easily implemented through automata constructions.

Coming back to bad behavior generation, in CASE1, we return BadGeni(λ)
(where λ is the empty sequence) as a global bad behavior. In CASE2, we simply pick
any sequence αk from SUVk and return BadGenk(αk) as a global bad behavior.

One can show that our technique is indeed correct:

Theorem 2. If the class C is empty then the push-in technique returns “yes”, otherwise
it returns “no”. When the technique returns yes, it shows that the system doesn’t have
any of the global bad behaviors in BAD, otherwise it indicates that the system does
exhibit bad behaviors in BAD.

In each step of our algorithm, one can use standard algorithms in automata theory to
make the obtained automata like Ui’s and Ai’s smaller. The algorithms include elimi-
nating unreachable states and/or minimization. Additionally, the algorithms as well as
all the automata constructions mentioned in the push-in technique can be implemented
using existing automata manipulation tools like Grail [1].
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From the correctness theorem, we know that the push-in technique is sound and
complete. However, one question still remains unsolved: Are test sequences (for black-
box Bi) in each Ui more than necessary (in solving the global testing problem)? We
can show that each Ui derived from our push-in technique is “optimal” in the follow-
ing sense. Suppose that we have completed the first i − 1 Steps (i.e., the black-boxes
B1, . . ., Bi−1 have been tested) and have obtained Ui to start the subsequent steps (i.e.,
the remaining black-boxes Bi, . . ., Bk are not tested yet). Each test sequence αi in
Ui has to be run, since one can show the following two statements: There are black-
boxes B∗

i , . . ., B∗
k , such that αi is a successful (resp. unsuccessful) test sequence for

B∗
i and the system G(B1, . . ., Bi−1, B

∗
i , . . ., B∗

k) has (resp. does not have) a global bad
behavior.

Table 1. Experiment Results: Counts of Test Sequences

maxlength=10 maxlength=20 maxlength=30
stepi #Ai #Ui #SUVi TCi #Ai #Ui #SUVi TCi #Ai #Ui #SUVi TCi

step1 1.06X107 148 47 68 7.16X1015 8.06X104 3533 4572 2.16X1024 4.14X107 2.23X105 2.87X105

case 1 step2 3.05X106 548 12 41 6.92X1014 4.62X105 177 393 1.13X1023 2.43X108 1331 2940
step3 4.78X104 4.78X104 7 39 1.15X1012 1.15X1012 58 297 1.81X1019 1.81X1019 274 1577
step1 1.38X107 386 73 121 5.90X1015 2.61X105 6697 9384 1.59X1024 1.42X108 4.74X105 6.30X105

case 2 step2 3.12X106 142 13 25 4.94X1014 5.91X104 93 203 6.99X1022 2.53X107 645 1356
step3 7.25X105 7.25X105 0 47 1.11X1013 1.11X1013 0 277 1.48X1020 1.48X1020 0 1259
step1 1.38X107 386 73 121 5.90X1015 2.61X105 6697 9384 1.59X1024 1.42X108 4.74X105 6.30X105

case 3 step2 3.12X106 142 13 25 4.94X1014 5.91X104 93 203 6.99X1022 2.53X107 645 1356
step3 7.25X105 7.25X105 0 47 1.11X1013 1.11X1013 13 359 1.48X1020 1.48X1020 129 2577
step1 1.30X106 178 32 76 3.51X1015 2.20X105 5507 8197 1.65X1024 1.36X108 4.44X105 6.00X105

case 4 step2 1.02X105 97 0 14 9.54X1013 1.70X105 0 128 2.39X1022 1.22X108 0 906
step3 0 0 0 0 0 0 0 0 0 0 0 0

5 Experiments

All the experiments were performed on a PC with a 800MHz Pentium III CPU and
128MB memory. The Grail [1] tool was used to perform almost all the automata oper-
ations3. The entire experiment process was driven by a Perl script and carried out auto-
matically. Our experiments were run on the system of black-boxes shown in Figure 1.
In the experiments, we designated black-boxes Timer, Sensor and Comm as B1, B2,
and B3, respectively. The internal implementations of the black-boxes are shown in Fig-
ures 3, 4 and 5, on which the unit testing in the experiments was performed. We have
totally run twelve experiments (each experiment is a complete execution of the push-in
technique), which are divided into four cases. Each of the four cases consists of three
experiments, which are illustrated in detail as follows.

Case 1. Firstly, we wish that whenever a pause event takes place, there should be no
more send until a resume occurs. The corresponding bad behaviors are specified as
a regular expression, Σ∗p(Σ − {r})∗sΣ∗, where Σ is the set of all the twelve events
in the system; p, r, and s stand for the pause, send, and resume, respectively (such
abbreviation will be used throughout this section). For the first experiment run in this
case, we chose the Bad to be all words in the regular expression that are not longer

3 We implemented (in C) three additional operations to manipulate automata with ε-moves and
to count the number of words in a finite language accepted by an automaton, which are not
provided in Grail.
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than 10 (denoted by “maxlength=10”). The remaining two experiments were run with
“maxlength=20” and “maxlength=30”, respectively. To understand the results shown in
Table 1, we go through the third experiment (i.e., “maxlength=30”). The results of the
experiment are shown in the box at the right upper corner in the table (i.e., under the
four columns associated with “maxlength=30” and in the three rows (“step1”, “step2”,
“step3”) associated with “case 1”). The three steps in the experiment correspond to the
three Steps (since there are three black-boxes) in the push-in technique. The auxiliary
automaton A1 calculated in Step 1 accepts totally #A1 = 2.16 × 1024 test sequences.
The unit test sequence automaton U1 accepts #U1 = 4.14× 107 test sequences. Using
the black-box testing procedure in Section 4.3, we actually only performed TC1 =
2.87 × 105 unit tests over B1 (the Timer), among which #SUV1 = 2.23 × 105

tests survived. In Step 2 and Step 3, we obtained #A2, #U2, #A3, #U3 similarly as
shown in the table. In particular, we actually performed TC2 = 2940 unit tests over the
Sensor in Step 2 and TC3 = 1577 unit tests over the Comm in Step 3. Since the last
surviving set SUV3 is not empty (#SUV3 = 274), the experiment detects a global bad
behavior specified in this case.

Notice that the total number of unit tests run in this experiment is TC1+TC2+TC3,
which is not more than 2.92 × 105. This number essentially indicates the actual “cost”
of the experiment in deciding whether there is a global bad behavior specified in the
case and whose length is bounded by 30. This number is quite good considering the
astronomical number #A1 = 2.16 × 1024 which would be the number of integration
test sequences if one run integration testing, since Mglobal = A1 in the system. The
other two experiments (“maxlength=10” and “maxlength=20”) also detected a global
bad behavior and results are shown in the first three rows under “maxlength=10” and
“maxlength=20” in Table 1 (the costs of these two experiments, which are 148 and 5262
respectively, become much smaller).

Case 2. The detected bad behaviors are due to the concurrency nature of these black-
boxes: a fire was issued before the pause is sent to Timer, which eventually leads to
another send. For instance, a global bad behavior could be like the following:
fire data send msg fire data send cerr fire data pause send. From this observa-
tion, we believed that the system might also have other bad behaviors: after a cerr takes
place, there could be another cerr coming before a resume occurs. Such bad behaviors
are encoded by Σ∗c(Σ − {r})∗cΣ∗. The three experiments in this case, however, did
not detect such bad behaviors (i.e., #SUV3 = 0 for all lengths, shown in the third row
“step3” associated with “case 2” in Table 1).

Case 3. Based upon the experiments in the previous case, we carefully studied the
system and realized that the implementation of Comm might be wrong: after an error
occurs (i.e., a cerr outputs),Comm is supposed to retain its state prior to the output of the
cerr, while it does not. After correcting this bug (by making the internal implementation
of Comm, shown in Figure 5, move to state s2 instead of s0 after a cerr is output), in this
case, we run the three experiments again. The experiments detected bad behaviors only
with length more than 10 (i.e., #SUV3 = 0 when maxlength is 10 and #SUV3 > 0
when maxlength is 20 and 30, shown in Table 1).
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Case 4. Now we want to test that: after an error occurs in Sensor (i.e., a serr is
issued), there will be at most one more fire issued before a resume occurs. The
corresponding bad behaviors are encoded by Σ∗serr(Σ − {r})∗f(Σ − {r})∗f(Σ −
{r})∗rΣ∗, where f stands for fire. Our experiments did not detect any of such behav-
iors for all the three choices of maxlength: 10, 20, 30. In fact, in the experiments, no
testing over Comm was needed. This is because, shown in the last three rows of Table 1,
#SUV2 is 0 for all the three choices.

We measured the total time that our script used for automata manipulations in each
of the twelve experiments, shown in Table 2. In the table, the “result” shows whether a
global bad behavior was detected in an experiment; i.e., “×” (resp. “

√
”) indicates “de-

tected” (resp. “not detected”). As shown in the table, the total time is within a minute for
all the four experiments with “maxlength=10”. For “maxlength=20”, the time is still ac-
ceptable (within an hour). When the maxlength is increased to 30, the time is still within
our patience (which was set to be 24 hours). Yet, our script could not finish within the
patience for any experiment when we tried to push maxlength to 40. Even though de-
terminization and minimization are optional in our push-in technique, we made them
mandatory in our experiments. In this way, we can cross-compare the sizes of the au-
tomata obtained in each step of the experiments. The largest size of all the automata
constructed in the twelve experiments, after determinization and minimization, is with
726 states and 2138 transitions. In an experiment with maxlength=40, the script tried
to make an automaton (with 1182 states) deterministic and failed to do so within our
patience.

Exhaustive integration testing over a concurrent system is in general infeasible. How-
ever, the experiments show that, using the push-in technique, we can completely solve
the global testing problem with a substantially smaller number of tests over each in-
dividual black-box only, even for an extremely large set of Bad. For instance, the
total number of unit tests (TCi’s) performed in each of the four experiments with
“maxlength=30” is in the order of 105, while each Bad is in the order of 1024 (no-
tice that each Bad is always larger than each #A1, shown in Table 1).

Table 2. Experiment Results: Time Efficiency

maxlength=10 maxlength=20 maxlength=30
Cases time result time result time result

Case 1 ∼25s × ∼40m × ∼19h ×
Case 2 ∼34s

√ ∼58m
√ ∼18h

√
Case 3 ∼36s

√ ∼56m × ∼18h ×
Case 4 ∼17s

√ ∼22m
√ ∼5h

√

6 Future Work

This paper presents an automata-theoretic and decompositional technique to testing a
system of concurrent black-boxes, which is automatic, sound, and complete. Our tech-
nique can be generalized to many other forms of bad behavior specifications (i.e., the
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finite set Bad). For instance, we may that specify that Bad consist of all observable se-
quences not longer than 40, each of which can make the gluer enter a given (undesired)
state. But the exact formalisms for bad behavior specifications need further investi-
gation. Our model of the system is based on synchronized communications. There-
fore, it would be interesting to see whether the approach can be generalized to some
forms of asynchronous (e.g., shared-variable) systems. Black-boxes in our model are
event-driven; it is also worthwhile to study other decompositional testing approaches
for data-driven black-boxes. Sometimes, our push-in technique fails to complete, due to
an extremely large bad behavior set Bad (e.g., our experiments with “maxlength=40”
shown earlier, whose global test sequences deduced from Bad are roughly as many
as 1033). In this case, we need study methods to (symbolically) partition the set into
smaller subsets such that the push-in technique can be run over each smaller subset. In
this way, a global bad behavior could instead be found. In our definition of the push-in
technique, there is not a pre-defined ordering in testing the black-boxes. For instance,
in our experiments, the ordering was Timer, Sensor, Comm, based on the size of a
black-box’s interface. Clearly, more studies are needed to clarify the relationship be-
tween the efficiency of our technique and the choices of the ordering.
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Abstract. In this paper we describe a specification-based approach to
automated generation of both positive and negative test sets for parsers.
We propose coverage criteria definitions for such test sets and algorithms
for generation of the test sets with respect to proposed coverage criteria.
We also present practical results of the technique application to testing
syntax analyzers of several languages including C and Java.

Keywords: specification-based test generation, coverage criterion, com-
piler testing, parser, positive tests, negative tests, mutation testing, for-
mal language, BNF grammar.

1 Introduction

Compilers are the most important tools used in software development. Reliability
and correctness of compilers is a question of vital importance. Indeed, correctness
of any application depends on correctness of a compiler the application was
compiled by. Input data for a compiler has a very complicated structure. Besides,
transformations performed by compilers are also very sophisticated. Thus, all
phases of compiler testing (test selection, test running, SUT1 outcome analysis)
need automation.

Syntax analysis is the very first phase of the compilation process. Correctness
of functionality of the other compilation phases (semantics checking, optimiza-
tions, code generation) depends on correctness of syntax analysis. So, syntax
analyzer testing is a base for testing all other phases of compilation.

Grammar description in the form of BNF is a usual way to define syntax for-
mally. In fact, BNF-description is a specification of syntax analyzer’s functional-
ity. Thus, the specification-based testing approach (see [15]) is the most winning
solution in this area. Existence of a formal description allows an automation of
test selection. Therefore, testing effort is reduced. Besides, systematic character
of testing increases confidence in test results.

Many authors have been investigating the problem of grammar-based test
selection for syntax analyzers. Fundamental paper [17] introduces the following

1 The abbreviation SUT stands for “system under test”.

W. Grieskamp and C. Weise (Eds.): FATES 2005, LNCS 3997, pp. 187–202, 2006.
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coverage criterion for positive test2 sets: For each rule of the grammar, the test
set should contain a sentence that uses this rule in some derivation tree. In the
paper, Purdom proposed an algorithm to generate the smallest test set meeting
this criterion. However, the Purdom’s criterion was found unsatisfactory. Lämmel
in [9] showed that test sets generated by Purdom’s algorithm does not detect
elementary errors. Lämmel proposed the following stronger coverage criterion:
For each pair of rules of a grammar a test set should contain a sentence that
uses the first rule immediately after the second rule in some derivation tree.

There are also several probabilistic approaches (see [6, 12, 10, 11]). These ap-
proaches define no coverage criteria. Therefore, the following problem rises:
When should a generator finish generating tests? To solve this problem, au-
thors often introduce probabilities of rule occurrences in derivation trees. When
a rule is used in a derivation tree of the next test, the corresponding probabil-
ity decreases. In any case, there is a termination problem for these approaches.
Besides, random nature of a generation process can not guarantee systematic
testing.

All approaches quoted above concern generation of positive tests for syntax an-
alyzer. Nowadays, there are very few works that propose techniques to generate
negative tests3 for syntax analyzer. However, negative tests are very important
because admission of an incorrect lexeme sequence by syntax analyzer may lead
to abnormal termination of the compilation.

Harm and Lämmel [7] have made a hypothesis that negative tests for syntax
analyzer may be generated with the help of a positive tests generator using
mutation testing techniques (see [5, 13]). The main idea is as follows. First, one
should modify the original grammar in order to obtain a number of grammars
(mutants) defining languages that are close to but not equivalent to the original
one. Next, for each mutant grammar one should generate positive tests in order
to obtain potentially negative tests. General problems of this approach are:

– A mutant grammar may be equivalent to the original one. Such mutants
must be detected and must not be used in the test generation process.

– Tests generated for a mutant grammar may belong to the original language.
In other words, some of potentially negative tests in fact may be positive.
All such tests must be removed from the negative test set.

In general case both these problems are very difficult. The second one may be
solved by using a reference syntax analyzer of the same language. Unfortunately,
such a reference analyzer may not be accessible.

In this paper we describe coverage criteria for syntax analyzer testing on
the basis of classical syntax analysis algorithms (see [1]). Such an approach
seems suitable because we want to obtain test sets for syntax analyzers, and
so, we should estimate quality of test sets with respect to characteristics of the
SUT (i.e. syntax analyzer) such as, for example, functional coverage or code
coverage (see [2]). The technique we describe is developed in the movement

2 A sentence is called a positive test if it is a sentence of the target formal language.
3 A sentence is called a negative test if it is not a sentence of the target formal language.
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of our general model-based approach to compiler testing (see [18, 8, 16]). We
consider classical algorithms of syntax analysis as models of syntax analyzer’s
behavior. As mentioned above, there are very few works concerning the problem
of negative tests generation. This paper proposes a solution of this problem.

The remainder of the paper is organized as follows. In Section 2 some basic
notions needed in the main part of the paper are spelled out. In Section 3 our
testing approach is described. In Section 4 experimental results are presented.
In Section 5 the paper is concluded.

2 Preliminaries

Let us start with some standard definitions concerning formal languages. More
strict and detailed consideration of facts presented here may be found in well-
known book of A .Aho, R. Sethi, and J. D. Ullman [1].

A context-free grammar G of a formal language is a quadruplet (T ,N ,P , S),
where T is a set of terminals, N is a set of nonterminals, P is a finite set of
productions or rules, S ∈ N is called start symbol.

By LG denote a language generated by the grammar G.
A grammar G′ = (T ′,N ′,P ′, S′) is called an augmented grammar of G if

T ′ = T , N ′ is equal to N supplemented by a new nonterminal S′ (a new start
symbol), and P ′ is equal to P supplemented by a new production S′ → S.

A sequence of grammar symbols (terminals and nonterminals) is called a
sentential form of G. In this paper Greek letters from beginning of the alphabet
(α, β, . . . ) stand for sentential forms. The empty form is denoted by ε.

A sentential form is a right sentential form if it has a rightmost derivation.

Example. Consider the following grammar:

S → AB
A → cd
B → eCf
C → Ae

In this grammar the sentential form cdB does not have a rightmost deriva-
tion, i.e. this form can not be obtained by series of expansions of rightmost
nonterminals. The form AeCf is an example of right sentential form. �

Let α be a right sentential form. A subsequence β ⊆ α is called a handle if β may
be reduced to some nonterminal such that the sentential form obtained from α
by this reduction may be reduced to the start symbol.

Example. Consider the grammar from the previous example. As mentioned
above, the sequence AeCf is a right sentential form. It includes two subsequences
Ae and eCf , which may be reduced to nonterminals C and B respectively.
Nevertheless, only the sequence eCf may be considered as a handle because the
sentential form CCf can not be derived from the start symbol. �

A prefix of a right sentential form is called a viable prefix of the form if it does
not exceed the right bound of the rightmost handle of the form.
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A production from a grammar G is called an item of the grammar G if it has
a dot in some position of its right part. By P denote the set of all items of G.

Example. There are 4 items in the production A → XY Z: A → •XY Z, A →
X • Y Z, A → XY • Z, and A → XY Z•. �

An item of a grammar G is called kernel if it has a dot not at the beginning
of the right part of the production or if it is equal to the item S′ → •S of the
augmented grammar G′.

Let I be a set of items. Let J be a minimal set of items such that the following
conditions hold: (i) I ⊆ J ; (ii) for any item A → α •Bβ ∈ I and any production
B → γ the item B → •γ belongs to J . Then J is called a closure of I and is
denoted by closure(I).

Consider a pair (I, X), where I is a set of items of a grammar G and X is a
grammar symbol (terminal or nonterminal). We define the function goto by the
rule goto(I, X) = closure({A → αX • β | A → α • Xβ ∈ I}).

Consider an augmented grammar G′ = (T ,N ′,P ′, S′) with N ′ = N ∪ {S′}
and P = P ∪ {S′ → S}. Let I0 = closure({S′ → •S}). Starting with I0, we
construct a system of item sets I0, . . . , IN such that for any pair (Ik, X), where
k = 0, . . . , N and X is a grammar symbol, there exists an index j = 0, . . . , N
such that goto(Ik, X) = Ij . Such a system of item sets is called a canonical item
set system. Using a canonical system I0, . . . , IN , we create a finite state machine
A for recognition of viable prefixes. Namely, we take canonical item sets Ij as
states sj of A and specify transitions by the function goto.

There are two well-known syntax analysis algorithms: LL-analysis and LR-
analysis (see [1]). An LL-analyzer constructs the leftmost derivation of a target
language sentence using transition diagrams or predictive analysis tables. A non-
recursive implementation of an LL-analyzer uses a stack and a predictive analysis
table. Initially, the stack contains the “end of line character” $ and the start
symbol of the grammar. At each step the analyzer deals with a current input
symbol a and a symbol X on the top of the stack. Behavior of the analyzer is
determined by these two symbols as follows:

– if X = a = $, then the analyzer finishes successfully;
– if X = a  = $, then the analyzer pops the symbol X from the stack and pass

on to the next input symbol;
– if X is a nonterminal, then the analyzer is looking for an expansion of symbol

X such that the symbol a is acceptable for this expansion. After that, the
symbol X in the stack is replaced by inverted sequence of symbols of the
expansion. For example, if the expansion has the form X → ABC, then the
analyzer replaces X by the sequence CBA. As a result, the symbol A is on
the top of the stack. Conflicts happening in expansion search process may
be resolved with the help of look-ahead input symbols.

Now we consider an LR-analyzer, which also uses a stack. Such an analyzer
has two main operations:
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– to shift a new input symbol from the input stream to the stack;
– to reduce several successive symbols from the top of the stack to some non-

terminal.

At each step the stack contains a viable prefix of some right sentential form. Any
shift/reduce action pushes to the stack a state symbol sj that corresponds to a
current viable prefix. The analyzer makes a decision about shift/reduce action
depending on the pair (symbol sj ; current input symbol). If the stack contains
the start symbol of the grammar G, then the analyzer finishes.

3 Technique Description

3.1 Positive and Negative Tests for Parser

In this paper a parser means a boolean function that is defined at sequences of
terminal symbols and is equal to ’true’ iff a sequence belongs to given formal
language and is equal to ’false’ otherwise. In fact, parser implementations may
also have some additional features (for example, parser may construct derivation
tree or output error messages) but in this paper we ignore such features.

A test for a parser is called positive if the parser is required to return ’true’
on this test. In other words, a positive test is a sentence of the target language.

A test for a parser is called negative if the parser is required to return ’false’
on this test. In other words, a negative test is a terminal sequence that is not a
sentence of the target language.

To construct a positive test, it is enough to derive some terminal sentential
from the start grammar symbol with the help of grammar productions with
restricted production recursion depth.

As for negative tests, there are two problems:

– how much difference should be between negative tests and sentences of the
target language?

– how to create a sentence that is certainly not a sentence of the target lan-
guage?

First, we answer the second question.
Consider a grammar G = (T ,N ,P , S). For any symbol X ∈ T ∪N we define

a set UX of occurrences of the symbol X in G. This set contains all pairs

(production p ∈ P ; number i of the symbol X in the production p)

such that a symbol standing on i-th position of the right part of p is the sym-
bol X . A pair (p, i) ∈ UX is called an occurrence of the symbol X in the produc-
tion p.

Let t be a terminal. For any occurrence u ∈ Ut, u = (p, i), p = X → αtβ of t in
G we construct a set Fu of terminals t′ ∈ T such that there exists a derivation

S
∗⇒ γXδ

p⇒ γαtβδ
∗⇒ α′tt′β′.



192 S. Zelenov and S. Zelenova

Here Greek letters stand for some subsentential forms, i.e. sequences of nonter-
minals and terminals. If there exists a derivation S

∗⇒ γX
p⇒ γαt of a sentence

that ends with terminal t, then the set Fu contains the empty sequence ε.
By Ft denote the set

⋃
u∈Ut

Fu. In other words, the set Ft is a set of terminals

that may be an immediate continuation of the terminal t.
Consider the set of terminals that can not immediately follow t:

Nt = (T ∪ {ε}) \ Ft.

Statement 1. A terminal sequence containing a subsequence tt′ with t′ ∈ Nt is
not a sentence of the formal language generated by the grammar G.

Proof. This is clear from the definition of the set Nt. �

Let α = t1 . . . tn be a terminal sequence such that there exists a derivation
S

∗⇒ βαγ. For the sequence α, we a define the set Nα of terminals that can
not immediately follow α. More preciesely, t′ ∈ Nα iff there exist no derivation
S

∗⇒ βαt′γ. Hence, each sequence βαt′γ with t′ ∈ Nα is not a sequence of formal
language generated by the grammar G.

So, we can create terminal sequences that certainly do not belong to the target
formal language. In the next subsection we discuss the following problem: How
to obtain a representative set of negative tests for parser.

3.2 Coverage Criteria

The main operation performed by LL-parsers and LR-parsers is making decision
about further actions on the basis of some incomplete data (that is a delivered
part of the input stream). An LL-parser makes such a decision on the basis of a
pair (nonterminal on the top of the stack; current input symbol); An LR-parser
makes such a decision on the basis of a pair (state symbol on the top of the stack;
current input symbol). Therefore we formulate the following coverage criteria for
positive test set:

(PLL) All pairs

(nonterminal A; acceptable input token t)

must be covered. A pair (A, t) is covered iff a test set contains a terminal
sequence that is contained in the target language and has a derivation S

∗⇒
αAβ ⇒ αtγβ. In other words, in the course of processing that sequence an
LL-parser reaches a situation, when A is on the top of the stack and t is a
current input symbol. A variant of this criterion is presented in [4].

(PLR) All pairs

(state symbol si;
transition from the state si marked by a grammar symbol X)

must be covered. A pair (si, X) is covered iff a test set contains a terminal
sequence that is contained in the target language and has a derivation



Automated Generation of Positive and Negative Tests for Parsers 193

S
∗⇒ αXβ such that the prefix α corresponds to si. In other words, in

the course of processing that sequence an LR-parser reaches a situation,
when si is on the top of the stack and some prefix of the input stream is
a terminal sequence that may be reduced to X .

In a similar manner, we formulate the following coverage criteria for negative
test set (these two criteria have a parameter r that stands for a quantity of
“correct” terminals prefiwing a “wrong” terminal):

(NLLR) Let A be a nonterminal. A terminal sequence t1 . . . tr is called an ac-
ceptable terminal pre-sequence of A if there exists a sentential form
αt1 . . . trAβ derived from the start grammar symbol. Consider a union
of sets Nt1...tr for all acceptable terminal pre-sequences of the symbol
A with the length r ≤ R. The criterion is: All pairs (A, t′) must be
covered, where t′ is contained in the considered union. A pair (A, t′) is
covered iff a test set contains a terminal sequence that is not a sentence
of the target language and in the course of processing this sequence an
LL-parser reaches a situation, when A is on the top of the stack and
the “wrong” symbol t′ is a current input symbol.

(NLRR) Let si be a state symbol of the FSM A recognizing viable prefixes. A
terminal sequence t1 . . . tr is called an acceptable terminal pre-sequence
of si if there exists a sentential form αt1 . . . trβ derived from the start
grammar symbol such that the prefix αt1 . . . tr corresponds to si. Con-
sider a union of sets Nt1...tr for all acceptable terminal pre-sequences
of si with the length r ≤ R. The criterion is: All pairs (si, t

′) must be
covered, where t′ is contained in the considered union. A pair (si, t

′) is
covered iff a test set contains a terminal sequence that is not a sentence
of the target language and in the course of processing this sequence an
LR-parser reaches a situation, when si is on the top of the stack and t′

is a current input symbol.

In order to obtain a situation (A, t′) for the criterion (NLL) and a situation
(si, t

′) for the criterion (NLR), a negative test set must contain a terminal se-
quence a with prefix t1 . . . trt

′ such that an LL- or LR-parser obtains the required
symbol sequence in the stack in the course of processing the prefix t1 . . . tr. So, to
create negative tests, we modify sentences of the target language by insertion or
replacement of some terminals such that each modified sequence have “wrong”
prefix t1 . . . trt

′ with t′ ∈ Nt1...tr .4

4 There is a connection between the proposed approach and mutation testing. Namely,
for each terminal sequence that is a negative test obtained as described above we can
construct a mutant grammar such that this negative test is a sentence of a formal
language generated by this mutant grammar.

One of principles of mutation testing is the following coupling effect: Complex
faults are coupled to simple faults in such a way that a test set that detects all
simple faults in a program will detect most complex faults (see [14]). According to
the principle of coupling effect, we can apply only simple mutations. Note that the
approach proposed in this paper is completely agree with this principle.
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At the end of this subsection, we define two useful coverage criteria for some
special grammars.

Let a canonical item set system of a grammar G meets the following condition:
If Ii and Ij are two different item sets from the canonical system, then kernel
item subsets of sets Ii and Ij do not intersect. Note that for this kind of grammar
the following condition holds: If all grammar items are covered, then all pairs
(state of the FSM A; transition from this state) are also covered. Consider the
following coverage criterion for positive test set:

(WPLR) All pairs

(item π = B → α • Xβ of a grammar G;
terminal t acceptable for the symbol X as a first terminal)

must be covered. A pair (π, t) is covered iff a test set contains a sen-
tence of the target language with a derivation S

∗⇒ γBδ
∗⇒ γαXβδ

∗⇒
γαtμβδ.

In case of grammars of the specified kind, this criterion is stronger then (PLR).
Indeed, it is easy to show that each state of the FSM A may be designated by
its kernel item subset. Thus, since kernel item subsets of different states do not
intersect, then if all items are covered, then all states are also covered.

Similarly, consider the following coverage criterion for negative test set:

(WNLRR) Let π = B → α •β be an item of a grammar G. A terminal sequence
t1 . . . tr is called a terminal pre-sequence acceptable for the item π iff
there is a terminal sequence μt1 . . . tr • λ with a derivation

S
∗⇒ γBδ

π⇒ γα • βδ
∗⇒ μt1 . . . tr • λ,

i.e. μt1 . . . tr is derived from γα and λ is derived from βδ. Consider
a union of sets Nt1...tr for all acceptable terminal pre-sequences for
π with the length r ≤ R. The criterion is: All pairs (π, t′) must be
covered, where t′ is contained in the considered union. A pair (π, t′)
is covered iff a test set contains a terminal sequence that is not a
sentence of the target language and one of its prefixes has a form
μt1 . . . trt

′, where t1 . . . tr is a terminal pre-sequence acceptable for π
such that t′ ∈ Nt1...tr .

3.3 Test Sets

In this subsection we describe techniques for automatic generation test sets meet-
ing the coverage criteria introduced above.

Positive Tests. Let G = (T ,N ,P , S) be a grammar. Let B be a nonterminal,
A be a grammar symbol. By UB

A denote a set of all occurrences (p, i) of A in G
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such that p = B → αAβ. Let us enumerate elements of UB
A in the order in which

they occur in the text of BNF. By A(B,j) denote a j-th element of UB
A .

Example. Let a nonterminal B be defined by the following productions:

B → ADE
B → CADA
B → KB.

Here we have three occurrences of A: A(B,1) from the first production (B →
A1DE), A(B,2) and A(B,3) from the second production (B → CA2DA3). �

Let us introduce the following relation: We write A ≺ B if A appears in the right
part of some production for the nonterminal B.

Statement 2. For any grammar symbol A derived from the start symbol S
there exists a chain A ≺ B1 ≺ . . . ≺ Bk ≺ S such that all symbols Bi are
nonterminals, Bi  = S and Bi  = Bj for all i  = j.

Proof. By the assumption, A is derived from S. This means that there exists a
chain A ≺ B1 ≺ . . . ≺ Bk ≺ S for some non-terminals B1, . . . , Bk. Without loss
of generality we can assume that this chain has the minimal length. Suppose that
Bs  = Bs′ for all s  = s′, s, s′ = i, . . . , k and Bi−1 = Bl for some l ∈ {i, . . . , k}. So
we can construct a new chain A ≺ B1 ≺ . . . ≺ Bi−2 ≺ Bl ≺ . . . ≺ Bk ≺ S, which
is shorter than the original chain A ≺ B1 ≺ . . . ≺ Bk ≺ S. This contradiction
concludes the proof. �

The Statement 2 shows a way to create a test set that meets the criterion (PLL).
Construct a chain A ≺ B1 ≺ . . . ≺ Bk ≺ S by the following algorithm:

1. For the symbol A, find a nonterminal set NA such that for every nonterminal
from NA there exists its defining production with the symbol A in the right
part. If S ∈ NA, then the desired chain is constructed.

2. For each element B1 ∈ NA, find a nonterminal set NA,B1 such that for each
B2 ∈ NA,B1 we have B2  = B1 and there exists a defining production of B2
with B1 in the right part. If S ∈ NA,B1 , then the desired chain is constructed.

. . .
s. For each element Bs−1 ∈ NA,B1,...,Bs−2 , find a nonterminal set NA,B1,...,Bs−1

such that for each Bs ∈ NA,B1,...,Bs−1 we have

Bs /∈ {B1, . . . , Bs−1}
and there exists a defining production of Bs with Bs−1 in the right part. If
S ∈ NA,B1,...,Bs−2 , then the required chain is constructed.

. . .

By Statement 2, this algorithm finishes after creating the desired chain. Note
that each chain A ≺ B1 ≺ . . . ≺ Bk ≺ S corresponds to some derivations of
sentential forms containing A. We can obtain these derivations by restricting
occurrences of grammar symbols A, B1, . . . , Bk in productions that define the
relation ≺. Each resulting sentential form looks like αAβ, where α and β are
some sequences of grammar symbols.
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Let us define the function first(x) returning a set of expansions of x:

1. If x = t is a terminal, then first(t) = {t}.
2. If x = A is a nonterminal, then first(A) =

⋃
p=A→α

first(α).

3. If x = α = X1 . . . Xn is a sentential form then let

Cα = {βX2 . . . Xn | β ∈ first(X1)}.

If X1 can not expand to the empty sequence ε, then first(α) = Cα.
If X1 have an empty expansion, then first(α) = Cα ∪ first(X2 . . . Xn).

In the course of calculation of the function first, recursion for nonterminals
interrupts in the following way. If a recursive call occurs for the same nontermi-
nal, then the result of this call is equal to the empty set.

Statement 3. For any terminal t that is acceptable for A as a first expansion
symbol, the set first(A) contains an expansion beginning with t.

Proof. It follows by the construction. �

If we have a sentential form αAβ derived from the start symbol and a set
first(A), then we can construct a set of forms αγβ, where γ ∈ first(A). For
any form of this kind we fix a terminal sequence derived from this form. By TA

denote a set of fixed terminal sequences.

Statement 4. A positive test set
⋃

A∈N
TA meets the criterion (PLL).

Proof. It follows from Statement 3 and construction of sets TA. �

At the end of this subsection, we describe, how to select positive test sets meeting
the criteria WPLR and PLR.

Let B be a nonterminal of a grammar G. By Dk(B) denote a set of sentential
forms αBβ derived from the start symbol such that theirs minimal derivation
chains include at most k occurrences of every production.

Let π = B → λ • Xμ be an item of the grammar G. Suppose that

first(π) = {λγμ | γ ∈ first(X)}.

By definition, put ζ = αBβ ∈ Dk(B). For each sentential form αλγμβ with
λγμ ∈ first(π) let us fix some terminal sequence derived from this form. By
Tπ,ζ denote a set of the fixed sequences. It is clear that each sequence from Tπ,ζ

is a sentence of the target language. Thus, Tπ,ζ is a set of positive tests.

Statement 5. For each nonterminal B ∈ N of the grammar G let us fix some
sentential form ζB ∈ Dk(B). Then the positive test set⋃

π∈P,π=B→...

Tπ,ζB

meets the criterion (WPLR); recall that P is a set of all items of G.
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Proof. It follows from Statement 3. �

Statement 6. There exists a number K such that for each k > K a set⋃
π∈P

⋃
ζ∈Dk(B)

Tπ,ζ

meets the criterion (PLR).

Proof. It is easy to show that if k tends to infinity, then Dk(B) tends to a set of
all sentential forms αBβ. Therefore, there exists a number K such that for each
k > K the set Dk(B) covers all states of the FSM A recognizing viable prefixes.
Since we take the union for all items of G, all pairs (si, X) are also covered,
where si is a state symbol and X is a grammar symbol. �

Negative Tests. As mentioned above, the most natural way to create negative
tests is a mutation of sentences of the target language. Mutation of a sentence
may be performed by replacement of some (may be empty) subsequence of this
sentence by some “wrong” terminal sequence.

Let α = t1 . . . tn be a sentence of the target language. Let the terminal ti
be marked. Let us modify the sentence α as follows. Consider a set of terminal
sequences t1 . . . tit

′ti+1 . . . tn for all t′ ∈ Nti . Such a modification of the sentence
α is called a mutation of first kind and is denoted by mut1(α, i). The mutation of
first kind inserts “wrong” symbols into a sentence. Let us modify the sentence α
by another way as follows. Consider a set of terminal sequences t1 . . . tit

′ti+2 . . . tn
for all t′ ∈ Nti . Such a modification of the sentence α is called a mutation of
second kind and is denoted by mut2(α, i). The mutation of second kind replaces
one of terminals by “wrong” symbols. Let us also define mutations of first and
second kind for i = 0. In this case, a “wrong” symbol t′ belongs to a set of
symbols that are not acceptable as a first symbol, i.e.

t′ ∈ T \{t | ∃β = x1 . . . xn ∈ LG, x1 = t}.

The mutation operations are defined as above: mut1(t1 . . . tn, 0) = {t′t1 . . . tn},
mut2(t1 . . . tn, 0) = {t′t2 . . . tn}.

By Statement 1, both mutation operations give us negative tests. Now we
describe, how to construct a set of sentences with marked terminals. Next, we
describe, how to select negative test sets meeting criteria (NLL1) and (NLR1).

Let π = D → B1 . . . Bi • Bi+1 . . . Bn be an item of a grammar G.
Consider the following algorithm for construction of a set of sentences with

marked terminals.

1. Let Mπ be the empty set.
2. Construct a sentential form αDβ

∗⇐ S derived from the start symbol as is
described above. Let γ be a non-empty sequence from first(Bi+1 . . . Bn).
Add all sentential forms αγβ with marked first symbol of the sequence γ
to the set Mπ. By the construction of the set first(. . .), the first symbol
of the sequence γ is a terminal. If the sequence Bi+1 . . . Bn have an empty
expansion, then go to the step 3. Otherwise, Mπ is constructed.
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3. For each item π′ = X → λD • μ, add all sentential forms from the set Mπ′

to the set Mπ. Here recursion interrupts as follows. If a recursive call occurs
for the same item, then the result of this call is equal to the empty set.

Consider a grammar G obtained from the grammar G as follows. Terminals
and nonterminals of the grammar G are the same as of G. If the grammar G
contains a production A → B1 . . . Bn, then the grammar G contains the pro-
duction A → Bn . . . B1, where A is a nonterminal and Bi are grammar symbols.
The grammar G has only these productions.

It is clear that each sentence of the language generated by G is an inversion
of some sentence of the language generated by G.

Take an item π̄ = D → Bn . . . Bi+1•Bi . . . B1 of G corresponding to an item π
of G. Consider the set Mπ̄ in G. Let Nπ = {(X1 . . . Xn, i) | (Xn . . .X1, i) ∈ Mπ̄}.
Each sentential form from Nπ may be expanded to one or more target language
sentences with marked terminals. By Sπ denote the obtained set of marked
sentences. Now one can apply mutation operations of first and second kind to
sentences of this set.

Statement 7. Let A be a nonterminal, let PA be a set of items D → B1 . . . Bi •
Bi+1 . . . Bn such that Bi+1 = A. Then the negative test sets

Sj =
⋃
A

⋃
π∈PA

mutj(Sπ), j = 1, 2

meet the coverage criterion (NLL1).

Proof. Suppose that there exists a derivation S
∗⇒ αtAβ.

The nonterminal A appears at some step of this derivation, i.e.

S
∗⇒ γDδ

p⇒ γB1 . . . BiABi+2 . . . Bnδ
∗⇒ αtAβ,

where p = D → B1 . . . BiABi+2 . . . Bn. By the assumption, a set Mπ̄ may be
constructed for an item π̄ = D → Bn . . . Bi+2A•Bi . . . B1 of G. Therefore, if the
set Mπ̄ contains a sequence λAtμ then the pair (A, t′) with t′ ∈ Nt is covered.

Note that the original derivation of the sentence αtAβ corresponds to the
following derivation in the grammar G:

S
∗⇒ δ′Dδ′

p⇒ δ′Bn . . . Bi+2ABi . . . B1γ
′ ∗⇒ β′Atα′.

If the sequence Bi . . . B1 can not expand to the empty sequence ε, then there
exists a sequence in first(Bi . . . B1) that starts with t, i.e. Mπ̄ contains a sen-
tential form λAtμ, as desired. If Bi . . . B1 may expand to ε, then the proof is
similar. �

Statement 8. Negative test sets

Sj =
⋃
A

⋃
π∈PA

mutj(Sπ) (j = 1, 2)

defined in Statement 7 meet the coverage criterion (WPLR1).
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Proof. Is similar to proof of Statement 7. �

Let π = D → B1 . . . Bi • Bi+1 . . . Bn be an item of G. Note that at the second
step of construction of Mπ, we choose a sentential form S

∗⇒ αDβ. So, the set
Mπ depends on this sentential form. Hence, the set Sπ depends on this sentential
form too. Let Dk(D) be a set of sentential forms αDβ such that theirs minimal
derivation chains include at most k occurrences of each production.

Statement 9. There exists a number K such that for each k > K sets

Sjk =
⋃

π∈P

⋃
αDβ∈Dk

mutj(Sπ) (j = 1, 2)

meet the coverage criterion (NLR1).

Proof. It is easy to show that if k tends to infinity, then Dk(D) tends to a set
of all sentential forms αDβ. Therefore, there exists a number K such that for
each k > K all states of the FSM A recognizing viable prefixes are covered. So,
all pairs (si, t

′) are also covered, where si is a state symbol and t′ is a “wrong”
terminal. �

4 Experimental Results

We implemented the following generators:

– A generator GP that creates sets of positive tests for parsers meeting the
criterion PLL.

– A generator GN that creates sets of negative tests for parsers meeting the
criteria WNLR1 and NLL1.

Both generators take a specification of a target language (namely, BNF-gram-
mar) as an input. The generator GP has parameters that allow to control test set
size. The generator GN has a parameter that allows to control kind of mutation.

Besides, for each generated negative test the generator GN provides an in-
formation about location and kind of an error in the test. Thus, if the parser
under test can output proper error diagnostics, then one can use the generated
negative tests in order to test correctness of the parser’s error diagnostics.

We applied the generators to generate tests for the following programming
languages:

– C – an extension of ANSI C implemented in the GCC compiler (see [19]);
– mpC – a high-level parallel language, an extension of ANSI C (see [21]);
– Java (version 1.4);
– J@va – a specification extension of Java designed in the Institute for System

Programming of Russian Academy of Sciences (see [3]).

Table 1 reports some properties of the used BNF-grammars.
Tables 2, 3, 4 report some properties of generated test sets.
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Table 1. Properties of grammars used for test generation

Property C Java J@va
Number of non-terminals 70 135 174

Number of tokens 93 101 140
Minimal cardinality of Nt 1 19 34
Maximal cardinality of Nt 93 101 140
Average cardinality of Nt 68 79 119

Table 2. Number of generated tests

Generator C Java J@va
GP 137307 137148 219221
GN 43448 71943 145758

Table 3. Generation time

Generator C Java J@va
GP 19 m 30 s 19 m 51 s 43 m 08 s
GN 3 m 01 s 7 m 14 s 19 m 25 s

Table 4. Average size of generated tests (bytes)

Generator C Java J@va
GP 58 68 112
GN 219 220 266

The obtained tests for Java and J@va have been run on J@va-parser devel-
oped in the Institute for System Programming of Russian Academy of Sciences
(see [3]). As a result, the positive tests have detected 8 errors in the parser. The
positive tests for mpC have detected 12 errors in the mpC compiler. The gener-
ated tests for C have been run on the GCC compiler (see [19]). For 112 positive
tests, the compiler get caught in an endless loop. The generated tests for C have
been also run on C-parser developed in the Institute for System Programming
of Russian Academy of Sciences (see [20]). The negative tests have detected 2
errors in the parser.

5 Conclusion

In this paper we proposed coverage criteria for positive and negative tests for
parsers by using model-based and specification-based testing approach.
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One of the main advantage of the negative tests generation technique de-
scribed in the paper is that the technique guarantees negativeness of generated
tests. This allows to perform testing without any reference parser.

We described algorithms for generation of tests sets that meet the proposed
coverage criteria. We have developed corresponding generators of positive and
negative tests. Tests generated for different programming languages have been
applied to testing a number of parsers and compilers. As a result, errors in the
systems under test have been detected.

So, experimental results are quite encouraging. They prove adequacy of the
proposed coverage criteria. We believe that the technique described in the paper
will be useful in commercial compiler testing projects.
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Abstract. This paper deals with test data set selection from algebraic
specifications. Test data sets are generated from selection criteria which
are usually defined to cover specification axioms. The unfolding selection
criterion consists in covering the input domain of an operation using case
analysis. The unfolding procedure can be iterated in order to split input
domains of operations into finer subdomains. In this paper we propose to
extend an unfolding procedure previously developed in [5, 19] that could
only be performed on very low level, i.e. executable specifications. On
the contrary, our new unfolding procedure can be applied to any posi-
tive conditional specification. We show that our unfolding procedure is
sound (no test is added) and complete (no test is lost) with respect to
the starting reference test data set.

Keywords: Specification-based testing, algebraic specifications, selec-
tion criteria, unfolding, proof tree normalization, conditional rewriting.

1 Introduction

Specification-based testing, or black-box testing, consists in the dynamic verifi-
cation of the specification requirements. Moreover, formal specifications are of
great help for this task since they allow the design of well-founded and powerful
tools for test case generation and for test execution. Test cases are then auto-
matically generated from selection criteria. These criteria are chosen by experts
according to either the application domain or the criticity level. Generally, cri-
teria for specification-based testing allow to cover the specification requirements
(e.g. axioms, transitions or states). In order to provide a success/failure verdict
(oracle problem), test execution tools apply test inputs and analyse the outputs
by comparison with the expected results defined from the formal specification.
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Several approaches have been proposed, each one depending on the choice of
formalisms: labelled transition systems [15], model based specifications such as
the B method, VDM or Z [10, 16], synchronous reactive languages as LUSTRE
[20] and algebraic specifications [5, 12, 6, 2, 3, 14, 17, 18, 11, 9, 8]. In the framework
of testing from algebraic specifications, decision procedures interpret test outputs
such that the resulting verdicts fit on the notion of program correctness. Com-
paring test outputs with expected results may be a complex task when some in-
formation is missing (the oracle problem). Different observational approaches [7]
have been proposed to cope with similar problems arising with specification re-
finement. Previous works [5, 12] and more particularly [4, 14, 2] provide a formal
framework for a pure black-box testing from algebraic specifications. Test cases
are observable formulas which can be computed by the program under test and
interpreted as “true” or “false”. Correctness of a program under test with respect
to a specification is then defined up to some observational equivalence depending
on the set of observable formulas.

In this paper, we are interested in the process of selecting test sets from
algebraic specifications, more precisely from positive conditional algebraic spec-
ifications. Test data sets are generated from selection criteria which are usually
defined to cover specification axioms. The unfolding selection criterion consists
in covering the input domain of an operation using case analysis based on the
form of the axioms. The unfolding procedure can be iterated in order to split
input domains of operations into finer subdomains. In this paper we propose to
extend an unfolding procedure previously developed in [5, 19] that could only be
performed on very low level, i.e. executable specifications. On the contrary, our
new unfolding procedure can be applied to any positive conditional specification.

A selection criterion has to be viewed as the coverage of some formulas which
represent some test objectives, such as the axioms of the specifications. There
are two main strategies to select test cases: one that performs any selection of
test cases based on some deterministic choice or on a distribution on the con-
sidered input domain (random testing) and one that performs a selection of test
cases in order to cover subdomains identified by a domain coverage (partition
testing). In the latter case, subdomains partition the initial domain and corre-
spond to the various cases addressed by the specification. Concerning random
testing, it has been advocated by several works [6, 9] since either it is really easy
to implement or it brings a quantitative evaluation of the testing process. The
widely well-known drawback of random testing is the case of a subdomain with
a low probability level but with a high probability level of failure rate. Within
the framework of testing from algebraic specifications, such an unlikely subdo-
main arises with conditional axioms of the form ϕ(X) ⇒ ψ(X) where X is a
variable vector. If the subdomain making true the condition ϕ(X) has a low
probability, then random testing can miss the verification of ψ(X) which is pre-
cisely required on this problematic subdomain [5, 8]. On the contrary, partition
testing is based on a case analysis of the formula under test. The formula under
test is preprocessed in order to reveal pertinent subdomains. For example, [10]
translates formula under test into an equivalent disjunctive normal form, each
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conjunction representing a test subdomain. Another formula translation consists
in applying a proof strategy such that the remaining lemmas represent a test
subdomain [8]. [5, 19] have given importance to case analysis by unfolding spec-
ification axioms. It consists in splitting the input domain of an operation from
specification axioms. Selection criteria based on axiom unfolding allow the tester
to progressively refine the coverage domain in order to control the size of the
resulting test set.

The paper is organized as follows. In Section 2, we recall standard nota-
tions about algebraic positive conditional specifications. In order to be as self-
contained as possible, Section 3 gives relevant definitions of [14] concerning our
framework of testing and defines selection criteria and their associated prop-
erties. In Section 4, we recall the previous unfolding procedure defined for a
restricted class of conditional specifications, the executable ones, for which each
computation has a unique normal form. Section 5 introduces an extension of
this unfolding procedure allowing us to define a selection criterion for the class
of all positive conditional specifications. Both unfolding procedures perform a
case analysis on specification axioms defining the operations. We will show that
both unfolding selection criteria perform at each step an adequate partition of
the input domain insofar as both are sound (no test is added) and complete (no
test is lost) selection criteria.

2 Preliminaries

An (algebraic) signature Σ = (S, F, V ) consists in a set S of sorts, a set F of
function names each one equipped with an arity in S∗ × S and a S-indexed sets
of variables V . In the sequel, a function f with the arity (s1 . . . sn, s) will be
noted f : s1 × . . .× sn → s. Given a signature Σ = (S, F, V ), TΣ(V ) and TΣ are
both S-sets of terms with variables in V and ground terms, respectively, freely
generated from variables and functions in Σ and preserving arity of functions.
Using a standard numbering of the tree nodes by natural number strings, we can
refer to positions in a term. Thus, given a term t, a position of t is a string ω in N

which represents the path from the root of t to the subterm whose head function
occurs at this position. This subterm is noted t|ω . Given a position ω ∈ N∗ in
a term t, t[t′]ω is the term obtained from t by substituting the subterm t|ω by
t′. A substitution is any mapping ρ : V → TΣ(V ) that preserves sorts. They are
naturally extended to terms with variables. Σ-equations are formulae of the form
t = t′ with t, t′ ∈ TΣ(V )s for s ∈ S. A positive conditional Σ-formula is then
any sentence of the form α1 ∧ . . . ∧ αn ⇒ αn+1 where each αi is a Σ-equation
(1 ≤ i ≤ n+1). Sen(Σ) is the set of all positive conditional Σ-formulae. Given a
formula ϕ ∈ Sen(Σ), V ar(ϕ) is the set of all variables occurring in ϕ. A (positive
conditional) specification SP = (Σ, Ax) consists in a signature Σ and a set Ax
of positive conditional formulae often called axioms.

A Σ-algebra A is a S-indexed set A equipped for each f : s1×. . .×sn → s ∈ F
with a mapping fA : As1 × . . .×Asn → As. A Σ-morphism μ from a Σ-algebra
A to a Σ-algebra B is a mapping μ : A → B such that for all s ∈ S, μ(As) ⊆ Bs
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and for all f : s1 × . . . × sn → s ∈ F and all (a1, . . . , an) ∈ As1 × . . . × Asn

μ(fA(a1, . . . , an)) = fB(μ(a1), . . . , μ(an)). Alg(Σ) is the category objects of
which are all Σ-algebras. The set of ground terms TΣ can be extended into a
Σ-algebra by providing each function name f : s1 × . . . × sn → s ∈ F with an
application fTΣ : (t1, . . . , tn) �→ f(t1, . . . , tn). Given a Σ-algebra A, we note A :
TΣ → A the unique Σ-morphism that maps any f(t1, . . . , tn) to fA(tA1 , . . . , tAn ).
A Σ-algebra A is said reachable if A is surjective. Given a Σ-algebra A, a Σ-
interpretation in A is any mapping ι : V → A. They are naturally extended to
terms with variables. A Σ-algebra A satisfies a Σ-formula ϕ : ∧1≤i≤n ti = t′i ⇒
t = t′, noted A |= ϕ, if and only if for every Σ-interpretation ι in A, if ι(ti) = ι(t′i)
then ι(t) = ι(t′). Given Ψ ⊆ Sen(Σ) and two Σ-algebras A and B, A is Ψ -
equivalent to B, noted A ≡Ψ B, if and only if we have: ∀ϕ ∈ Ψ, A |= ϕ ⇐⇒ B |=
ϕ. Given a specification SP = (Σ, Ax), a Σ-algebra A is a SP -algebra if for every
ϕ ∈ Ax, A |= ϕ. Alg(SP ) is full full subcategory of Alg(Σ), objects of which are
all SP -algebras. A Σ-formula ϕ is a semantical consequence of a specification
SP = (Σ, Ax), noted SP |= ϕ, if and only if for every SP -algebra A, we have
A |= ϕ. SP • is the set of all semantical consequences. A sound and complete
calculus for positive conditional specifications (i.e. SP |= ϕ ⇐⇒ SP % ϕ) is
defined by the following inference rules:

Trans.

SP %
∧

1≤i≤m

αi⇒t = t′ SP %
∧

1≤i≤m

αi⇒t′ = t′′

SP %
∧

1≤i≤m

αi⇒t = t′′
Sym.

SP %
∧

1≤i≤m

αi⇒t = t′

SP %
∧

1≤i≤m

αi⇒t′ = t

Ref .
SP % t = t

Context

SP %
∧

1≤i≤m

αi ⇒ t1 = t′1 . . . SP %
∧

1≤i≤m

αi ⇒ tn = t′n

SP %
∧

1≤i≤m

αi ⇒ f(t1, . . . , tn) = f(t′1, . . . , tn)

Monotony

SP %
∧

1≤i≤m

αi ⇒ α

SP %
∧

1≤i≤m

αi ∧ β ⇒ α
Subst.

SP %
∧

1≤i≤m

αi ⇒ α

SP %
∧

1≤i≤m

σ(αi) ⇒ σ(α)

Axiom
ϕ ∈ Ax

(Σ, Ax) % ϕ
M.P

SP %
∧

1≤i≤m

αi ∧ u = v ⇒ α SP %
∧

1≤i≤m

αi ⇒ u = v

SP %
∧

1≤i≤m

αi ⇒ α

3 Testing from Algebraic Specifications

3.1 A General Framework

The interpretation of test case submission as a success or failure is closely related
to the notion of program correctness. More precisely, any test case submitted
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to a correct program should be analysed in a success case while ideally, an
incorrect program should fail for at least a test case. In the context of testing
from algebraic specifications, a first natural testing hypothesis is to suppose
that programs are denoted by Σ-algebras. Hence, the test case interpretation
can be defined from the satisfaction of some formulae. These formulae link input
test data to expected results using operations, predicates or connectors of the
specification. Thus, following our previous works [5, 14, 2], test cases are then
denoted by formulae. As test case submission should yield a verdict, the formulae
that represent test cases correspond to all formulae which can be interpreted by
a computation of the program as “true” or “false”. These “executable” formulae
are also called observable. In practice, observable formulae are ground formulae
only involving equalities on some given sorts (for example, all sorts provided
with an equality predicate within the programming language).

Let SP = (Σ, Ax) be a positive conditional specification and Obs ⊆ Sen(Σ)
any set of observable formulae. Let P be a program which is assimilated to a
Σ-algebra of Alg(Σ). It is sensible to assume that all values used by P are de-
noted by operation composition of Σ and that P has a functional behaviour
with respect to the operations of Σ. Actually, our notion of correctness is based
on this hypothesis. Indeed, under this minimal hypothesis, the program under
test can be viewed as a simple reachable Σ-algebra which evaluates terms as
the way the program computes the observable formulae. Then, test cases are
observable formulae, which are successful for the program under test if and
only if the Σ-algebra P satisfies them (i.e. executes them and interpret them as
“true”):

Definition 1 (Test case and test set). A test case is a formula of SP •∩Obs.
A test set T is a set of test cases. T is said to be successful for P if and only if
∀ϕ ∈ T, P |= ϕ.

Correctness for dynamic testing is defined following an observational approach
comparable to the ones used to define refinement of specifications: it is required
that an algebra of the concrete specification is observationally equivalent to an
algebra of the abstract specification. Here, by analogy, to be qualified as cor-
rect with respect to a specification, a program is required to be observationally
equivalent to an algebra of the specification up to the observable formulae of
Obs.

Definition 2 (Correctness). P is correct for SP via Obs, denoted by
CorrectObs(P, SP ), if and only if there exists an algebra A in Alg(SP ) such
that A ≡Obs P .

Note that our definition of test cases guarantees that any correct program is
necessarily successful for the set of all test cases SP • ∩ Obs. Indeed, SP • ∩ Obs
is clearly the largest set of formulae which are both satisfied by all SP -algebras
and executable by any program under test capable of interpreting formulae in
Obs. This property is also called the unbiased property [5].
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3.2 Selection Criterion

The challenge of testing then consists in managing (infinite) test sets. In practice,
experts apply some selection criteria on a reference test set in order to extract
a test set of size sufficiently reasonable to be submitted to the program. The
underlying idea is that all test sets satisfying a considered selection criterion
reveal the same class of incorrect programs, intuitively the ones corresponding
to the fault model captured by the criterion. For example, the criterion called
“uniformity hypothesis” postulates that any chosen value is equivalent to another
one. For example, if a test set is given by {σ(ϕ) | σ : V → TΣ} where ϕ denotes
a formula (e.g. an axiom of SP ) built over the variable x, then the uniformity
selection criterion consists in choosing one arbitrary substitution σ0 : V → TΣ

in order to select one test: σ0(ϕ).
A classical way to select test data with a selection criterion C consists in

spliting a given starting test set T into a family of test subsets {Ti}i∈IC(T ) such
that T = ∪i∈IC(T ) Ti holds. A test set satisfying such a selection criterion simply
contains at least one test case for each non empty subset Ti. Intuitively, all test
cases in Ti are supposed equivalent to reveal incorrect programs with respect the
fault model captured by Ti. In practice, T represents a property ϕ (an operation,
an axiom or any formula chosen as a testing objective) to be partially covered
by testing. The sets Ti then represent subproperties of ϕ. Hence, the selection
criterion C is a coverage criterion according to the way C is splitting the initial
test set T into the family {Ti}i∈IC(T ) . This is the method that we will use in the
paper to select test data, known under the term of partition testing.

Definition 3 (Selection criterion). A selection criterion C is a mapping1

P(SP •∩Obs)→P(P(SP •∩Obs)). For a test set T , we note |C(T )|=∪i∈IC(T ) Ti

where C(T ) = {Ti}i∈IC(T ) .
T ′ satisfies C applied to T , noted by T ′ � C(T ) if and only if:
∀i ∈ IC(T ), Ti  = ∅ ⇒ T ′ ∩ Ti  = ∅.

A selection criterion consists in a mapping that splits test sets into families of test
sets. The selection criterion is satisfied as soon as the considered test set contains
at least a test case within each (non empty) test set of the resulting family. To
be pertinent, a selection criterion should ensure some properties between the
starting test set and the resulting family of test sets:

Definition 4 (Properties). Let C, C′ be two selection criteria and T, T ′ two
test sets.

– C is said sound for T if and only if |C(T )| ⊆ T
– C is said complete for T if and only if |C(T )| = T .
– C is partitioning T if and only if ∀i, j ∈ IC(T ), i  = j ⇒ Ti ∩ Tj = ∅
– C is said finer than C′, denoted by C ≤ C′ if and only if

∀T, T ′ ⊆ SP • ∩ Obs, T ′ � C(T ) ⇒ T ′ � C′(T ).

1 For a given set X, P(X) denotes the set of all subsets of X.
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– A family of selection criteria {Ck}k∈C is said iterative if and only if
∀k ∈ C, ∃k′ ∈ C, Ck′ ≤ Ck.

The properties of soundness and completeness are essential for an adequate se-
lection criterion: soundness ensures that test cases will be selected within the
starting test set (i.e. no test is added) while completeness ensures that we cap-
ture all test cases up to the notion of equivalent test cases (i.e. no test is lost).
When C is partitioning T , this means that the different test sets Ti are not su-
perposed, and then, that one should choose at least a different test case for each
Ti to build a test set satisfying C for T . An iterative family of selection criteria
allows the tester to extend and to precise the process of test selection up to get a
test set of convenient size. In order to obtain such an iterative family of selection
criteria, it suffices to nest selection criteria. More precisely, if a selection criterion
Ck builds a test set family {T1, . . . , Tnk

} for a given test set T , and if a generic
selection criterion C applied to any test set of this family, say Ti for example,
provides the family {T 1

i , . . . T ni

i }, then we can consider the selection criterion
Ck′ defined by Ck′ (T ) = {T1, . . . , Ti−1, T

1
i , . . . T ni

i , Ti+1, . . . , Tnk
}. Moreover, if

the intermediate selection criterion C is sound and complete, then clearly Ck′ is
finer than Ck. We can systematically apply the selection criterion C to any test
set Ti occurring in Ck(T ) for arbitrary index k in C and test set T . Of course,
in practice, to define selection criteria in a generic and concise way, they will
be defined on test sets given in an intentional definition. Sections 4 and 5 will
define such iterative families of selection criteria based on an unfolding proce-
dure which makes a case analysis of each occurrence of operation according to
specification axioms.

3.3 A Reference Test Set

SP • contains all the formulas which can be deduced from SP . In particular, it
contains tautologies, redundant formulas. . . Without any additional knowledge
about the structure of the starting test set or of its elements, the only way to
select a finite test set is to use random technics. On the contrary, for many test
methods (anyway all test methods used in practice), some strategy schemata
are proposed to guide test selection. Our selection method takes inspiration
from classic methods that partition (more generally that split into) the input
domain of each function. Hence, it is quite natural to restrict ourselves to ground
equations of the form f(t1, . . . , tn) = tn+1 where ti ∈ TΣ (i = 1, . . . , n + 1) and
f ∈ F . f is the function under test applied to the input data t1, . . . , tn and tn+1
is the expected result. The reference test set is then defined:

Definition 5 (Reference test set). Let SP = (Σ, Ax) be a specification where
Σ = (S, F, V ) is a signature. Let us define the set T0(SP ) as follows:

T0(SP )={f(u1, . . . , un)=v | f ∈F, u1, . . . , un, v∈TΣ , SP % f(u1, . . . , un)=v}

This set is maximal with respect to the set of observable formulae Obs = {u =
v | u, v ∈ TΣ}. Indeed, we have T0(SP ) = SP • ∩ Obs (see Section 3.1).
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Definition 6 (Input domain of operations). Let SP = (Σ, Ax) be a speci-
fication. Let f : s1 × . . .× sn → s be an operation of Σ. The domain of f , noted
T0(SP )|f , is the set defined by:

T0(SP )|f = {f(u1, . . . , un) = v | f(u1, . . . , un) = v ∈ T0(SP )}

Elements in T0(SP ) are too numerous (often infinite) to be manageable. A sub-
set of T0(SP ) with a manageable size can be selected using an unfolding proce-
dure taking advantage of the structure of axioms. Indeed, selecting equations
in SP • from positive conditional specifications SP requires to apply modus-
ponens in order to remove equations in formula premises. Succinctly, our
method reports under the following form: splitting the input domain of f into
many subdomains according to the structure of the axioms defining f , called
test sets for f , and choosing any input in each non-empty sub-domain. For in-
stance, for an axiom of the form ∧1≤i≤m αi ⇒ f(x1, . . . , xn) = y, we can con-
sider the following test set: {f(σ(t1) . . . , σ(tn)) = σ(t) | σ : V → TΣ , ∀ε ∈
{αi}i∈1..m, SP |= σ(ε)}.

Definition 7 (Test set for operations). Let SP = (Σ, Ax) be a specification
where Σ = (S, F, V ) is a signature. Let C be a set of Σ-equations called set of
Σ-constraints. Let f : s1 × . . . × sn → s be an operation of Σ and t1, ..., tn, t be
terms of sorts s1, . . . sn, s.

A test set for f(t1, ..., tn) = t with respect to C, noted TC,f(t1,...,tn)=t, is the
set of ground equations defined by:

TC,f(t1,...,tn)=t = {σ(f(t1, ..., tn)) = σ(t) | σ : V → TΣ, ∀ε ∈ C SP |= σ(ε)}

4 The Selection Criteria Based on Axiom Unfolding in
LOFT

In this section, we formalize the problem of test selection from algebraic speci-
fications such as implemented in the test selection tool LOFT [5, 19].

4.1 The Unfolding Procedure in LOFT

The unfolding procedure as implemented in the test selection tool LOFT
assumes that any conditional positive specification SP is actually presented
under the form of a conditional rewrite system R, that is any axiom is a con-
ditional rewrite rule of the form ∧1≤i≤m αi ⇒ g(v1, . . . , vn) → v or can be di-
rectly transformed into a conditional rewrite rule 2. Moreover, to ensure both
soundeness and completeness of the unfolding procedure with respect to the
2 In this last case, this can be achieved, for instance, by imposing that signatures

Σ = (S, F, V ) are with constructors in C ⊆ F , and the equation g(u1, . . . , un) = v
satisfies g ∈ F \C, ui ∈ TΩ(V ) with Ω = (S, C, V ), and all non-constructor opera-
tions in v are lesser than g according to a well-founded order � on F . In this case,
g(u1, . . . , un) = v can be oriented from the left to the right (i.e. g(u1, . . . , un) → v).
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reference test set T0(SP ), R is assumed to be both confluent and equipped
with a well-founded ordering satisfying for all ∧1≤i≤m ti = t′i ⇒ t → t′ in R
and all substitutions σ:

– σ(t) > σ(t′) and
– σ(t) > σ(ti) and σ(t) > σ(t′i) for all 1 ≤ i ≤ m.

R is then reductive [13]. It is well-known that such rewrite systems ensure that
both join conditional rewriting is decidable [13] and: u

∗↔R v ⇐⇒ SP % u = v.
The unfolding procedure developed here, has in input:

– a conditional positive specification SP = (Σ, Ax) presented under the form
of a reductive and confluent rewrite system, and

– a set Γ of couples (Σ-constraint set, test pattern).

The first set Γ0 = {({f(x1, . . . , xn) = y}, f(x1, . . . , xn) = y)} where xi, y ∈ V
(1 ≤ i ≤ n).

The unfolding procedure is expressed by the two following inference rules 3:

Reduce

Γ ∪ {(C ∪ {r = s}, f(t1, ..., tn) = t)}
Γ ∪ (σ({(C}), σ(f(t1, ..., tn) = t))

σ most general unifier of r and s

Unfolding

Γ ∪ {(C ∪ {r = s}, f(t1, ..., tn) = t)}
Γ ∪

⋃
(c,σ)∈Tr(u|ω ,r=s)

{(σ(C) ∪ c, σ(f(t1, ..., tn) = t)}
ω a position in u and u ∈ {r, s}

where Tr(u|ω , r = s) for r and s not unifiable, is the set of couples defined by:

⎧⎨
⎩ ({σ(r[v]ω) = σ(s), σ(α1), . . . , σ(αm)}, σ)

σ mgu of u|ω and g(v1, . . . , vn),∧
1≤i≤m

αi ⇒ g(v1, . . . , vn) → v ∈ Ax

⎫⎬
⎭

As the definition of Tr(u|ω , r = s) is based on the subterm relation and
unification, this set is computable if the specification SP has a finite set of
axioms. Hence, given an equation r = s we have the selection criterion Cε that
maps any TC,f(t1,...,tn)=t to {TC\{r=s}∪c,σ(f(t1,...,tn)=t)}(c,σ)∈Tr(u|ω ,r=s) if r = s ∈
C, TC,f(t1,...,tn)=t otherwise.

We write Γ %U Γ ′ to indicate that Γ can be transformed to Γ ′ by applying
one of the above inference rules.

3 The unfolding procedure as defined in this section is actually a slight improvement
of the original one given in [19]. Indeed, in [19], specifications are supposed to satisfy
all the requirements succinctly given in the previous footnote 2.
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Hence, an unfolding procedure is a program that accepts in input a positive
conditional specification SP = (Σ, Ax) and uses the above inference rules to
generate a (finite or infinite) sequence

Γ0 %U Γ1 %U Γ2 %U Γ3 %U . . .

where Γ0 = {({f(x1, . . . , xn) = y}, f(x1, . . . , xn) = y)} with xi, y (1 ≤ i ≤ n)
are variables of Σ.

This unfolding procedure has been implemented in the test selection tool
LOFT [5, 19] which has been developed in PROLOG. This enables it to benefit
from a powerful resolution procedure of constraints. To illustrate this tool on an
example, let us specify the insert operation with respect to the List constructors.
This gives rise to the following specification written in the specification language
CASL:

spec Insert =
Nat

then
type List ::= [] | :: (Nat ; List)
op insert : Nat × List → List
∀ x, y: Nat ; L: List
• insert(x, []) = x :: [] %(insert empty)%
• x ≤ y ⇒ insert(x, y :: L) = x :: y :: L %(insert leq)%
• ¬ x ≤ y ⇒ insert(x, y :: L) = y :: insert(x, L) %(insert g)%

end

It is obvious to transform this specification into an equivalent rewrite system
by orienting each conclusion of axioms form the left to the right. With the
recursive path ordering >rpo resulting from the precedence ordering: insert >

:: > [], this rewrite system is reductive. Therefore, let us use LOFT to split
the domain of insert operation by unfolding its axioms. Hence, we obtain three
selection constraints corresponding to the three axioms of insert. The following
LOFT command expresses that the ≤ predicate must not be unfolded while the
insert operation must be unfolded once.

??- unfold_std([#(’__≤__:Nat,Nat->boolean’,0),#(’insert:nat,list->list’,1)],

insert(X,L1) = L2).

FINAL BINDING:

L1:list = empty

L2:list = __::__(X:nat,empty)

SOLUTION #1, CPUTIME = 0

FINAL BINDING:

L1:nlist = __::__(_v0:nat,_v1:list)

L2:nlist = __::__(X:nat,__::__(_v0,_v1))

REMAINING CONSTRAINTS = { __≤__(X,_v0) = true }
SOLUTION #2, CPUTIME = 0
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FINAL BINDING:

L1:nlist = __::__(_v0:nat,_v1:nlist)

L2:nlist = __::__(_v0,_v2:nlist)

REMAINING CONSTRAINTS = { __≤__(X:nat,_v0) = false, insert(X,_v1) = _v2 }
SOLUTION #3, CPUTIME = 0

GLOBAL TIME ELAPSED = 0 NUMBER OF SOLUTIONS = 3 yes

Note that LOFT uses a purely equational logic. Consequently, predicates are
translated as boolean operations. Now, if we unfold twice the insert operation,
only the subdomain #3 is split, because only the third constraint contains an
equation with an occurrence of insert. We do not give the LOFT outputs here,
but only the test cases produced to cover the last subdomain.

SOLVED CONSTRAINTS: BINDING:

L1:nlist = cons(_v0:nat,cons(_v1:nat,_v2:nlist)) L2:nlist =

cons(_v0,cons(_v1,_v3:nlist)) CONSTRAINTS = {
__≤__(X:nat,_v0) = false, __≤__(X,_v1) = false,

insert(X,_v2) = _v3 }

FINAL BINDING:

X:nat = 6

L1:nlist = __::__(1,__::__(0,__::__(2,__::__(0,__::__(9,empty)))))

L2:nlist = __::__(1,__::__(0,__::__(2,__::__(0,__::__(6,__::__(9,empty))))))

SOLUTION #5, CPUTIME = 9

4.2 Soundness and Completeness

Test sets for operations are naturally extended to set of constraint sets as follows:
Let Γ be a set of couples (Σ-constraint sets, test pattern)

TΓ =
⋃

(C,f(t1,...,tn)=t)∈Γ

TC,f(t1,...,tn)=t

The completeness result needs to assume that for any Γ resulting of the unfolding
procedure, any (C, f(t1, ..., tn = t)) ∈ Γ , any ε ∈ C and any ϕ ∈ Ax, V ar(ε) ∩
V ar(ϕ) = ∅. This can be easily obtained at each iteration of the unfolding
procedure by renaming variables by fresh ones.

Therefore, for any specification SP presented under the form of a reductive
and confluent rewrite system R, both soundness and completeness of the unfold-
ing procedure hold. Indeed, we have:

Theorem 8. If Γ %U Γ ′ then TΓ = TΓ ′ .

(The proof is given in [1])
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From Theorem 8, we have the expected result as a corollary:

Corollary 9 (Soundness and completeness). If Γ0 %U Γ1 %U Γ2 %U . . .
then for all i < ω, TΓi = T0(SP )|f .

By Theorem 8, the LOFT selection procedure is then sound and complete. More-
over, this selection procedure is iterative (see definition 3). However, the selection
procedure provided by LOFT is not partitioning because specification axioms
are not necessarily disjoint. More precisely, if two rewriting rules (obtained from
two different axioms) can be applied simultaneously (at the same position of the
same term of the same constraint), then the two resulting subdomains then have
some common tests.

Recently, the LOFT selection procedure has been re-used in the GATeL tool
[20, 21] that allows to produce test cases from LUSTRE specifications. LUSTRE
is a synchronous language widely used in industry to build reactive systems.
Hence, the GATeL tool unfolds LUSTRE equations to obtain test subdomains
also defined by constraints. Therefore, these constraints are solved such that a
test case is randomly built for each subdomain (if not empty).

5 Our Selection Criteria Based on Axiom Unfolding

In the last section, positive conditional specifications were equipped with strong
conditions (presenting specifications by reductive and confluent rewrite systems)
in order to obtain both soundness and completeness of the unfolding procedure.
Here, the only required constraint, for the same results, is that specifications are
positive conditional and that’s all.

5.1 Unfolding Procedure

As in the previous section, the unfolding procedure developed here, has the
following inputs:

– a conditional positive specification SP = (Σ, Ax) (without any other con-
straints), and

– a set Γ of couples (Σ-constraint sets, test pattern).

The first set Γ0 = {({f(x1, . . . , xn) = y}, f(x1, . . . , xn) = y)} where xi, y ∈ V
(1 ≤ i ≤ n).

The unfolding procedure is expressed by the two following inference rules:

Reduce
Γ ∪ {(C ∪ {r = s}, f(t1, ..., tn))}

Γ ∪ {(σ(C), σ(f(t1, ..., tn)))} σ mgu of r and s

Unfolding
Γ ∪ {(C ∪ {ε}, f(t1, ..., tn) = t}

Γ ∪
⋃

(c,σ)∈Tr(ε)

{(σ(C) ∪ c, σ(f(t1, ..., tn) = t))}
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where Tr(ε) for ε = (r = s) (or symmetrically s = r) with r and s not unifiable,
is the set of Σ-constraint sets defined by:

({σ(r[v]ω) = σ(s), σ(α1), . . . , σ(αm)}, σ)

σ mgu of r|ω and g(v1, . . . , vn),
(
1≤i≤m

αi ⇒ g(v1, . . . , vn) = v ∈ Ax

or

1≤i≤m

αi ⇒ v = g(v1, . . . , vn) ∈ Ax)

({σ(r) = σ(s[v]ω), σ(α1), . . . , σ(αm)}, σ)

σ mgu of s|ω and g(v1, . . . , vn),
(
1≤i≤m

αi ⇒ g(v1, . . . , vn) = v ∈ Ax

or

1≤i≤m

αi ⇒ v = g(v1, . . . , vn) ∈ Ax)

As the definition of Tr(r = s) is based on the subterm relation and unifica-
tion, this set is computable if the specification SP has a finite set of axioms.
Hence, given an equation ε we have the selection criterion Cε that maps any
TC,f(t1,...,tn)=t to {TC\{ε}∪c, σ(f(t1, ..., tn) = t)}(c,σ)∈Tr(ε) if ε ∈ C, TC,f(t1,...,tn)=t

otherwise.
We can observe that the above unfolding procedure is strongly combinatory.

This is the result of a complete unfolding on all subterms of both terms t and
r. This ensures the completeness of the procedure with respect to the test set
T0(SP ) (see the next section). As we saw in section 4, this combinatory can be
less when dealing with very low-level specifications (i.e. executable ones) [5, 19].
The interest here is that the unfolding procedure can be applied to any positive
conditional specification with a finite set of axioms. No other requirement is
imposed to ensure both completeness and soundness of the unfolding process.
Hence, this procedure enables us to start functional testing at a more abstract
level of specifications than executable ones.

5.2 Soundness and Completeness

We recall that test sets for operations are naturally extended to set of constraint
sets as follows: Let Γ be a set of couples (Σ-constraint sets, test pattern)

TΓ =
⋃

(C,f(t1,...,tn)=t)∈Γ

TC,f(t1,...,tn)=t

As previously, the completeness result needs to assume that for any Γ resulting
of the unfolding procedure, any C ∈ Γ , any ε ∈ C and any ϕ ∈ Ax, V ar(ε) ∩
V ar(ϕ) = ∅.

Theorem 9. If Γ %U Γ ′ then TΓ = TΓ ′ .

(The proof is given in [1])
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6 Conclusion

In this article, we have been interested in test set selection methods. We have
focused on selection criteria for partition testing strategies. It consists in divid-
ing the input domain of each operation into subdomains and then in selecting
test cases from each of these subdomains. Some relevant properties (soundness,
completeness, partition, iterative family) on these selection criteria have been
presented. The unfolding selection criterion consists in covering the input do-
main of an operation using case analysis on specification axioms. The unfolding
procedure can be iterated in order to split input domains of operations into finer
subdomains. We have then extended an unfolding procedure previously devel-
oped in [5, 19] that could only be performed on executable specifications. Our
unfolding procedure can be applied to any positive conditional specification. We
have shown that both unfolding procedures are sound (no test is added) and
complete (no test is lost) with respect to the starting reference test data set.

We still have ongoing researches concerning the definition of selection criteria
for a larger class of specification including structuration primitives and this work
takes inspiration from [17, 18]. Our goal is to be able to propose a framework of
functional testing including selection criteria which would be devoted to specifi-
cation coverage and usable at all steps of the software life cycle, and particularly,
at the requirement step.
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Jurdziński, Marcin 134

Katara, Mika 16
Keremoglu, M. Erkan 62
Kervinen, Antti 16

Le Gall, Pascale 203

Marre, Bruno 203
Maunumaa, Mika 16
Mayer, Johannes 72

Nachmanson, Lev 32
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